
Do Automated Program Repair Techniques
Repair Hard and Important Bugs?

Manish Motwani
Sandhya Sankarnarayanan René Just Yuriy Brun

University of Massachusetts Amherst



Automatic Program Repair: An Active Research Area

Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to fix?
Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017.



Automatic Program Repair: An Active Research Area

Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to fix?

Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017.



Automatic Program Repair: An Active Research Area

Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to fix?
Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017.



Automatic Program Repair: An Active Research Area
Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to fix?
Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017.



Motivation

Prior evaluations of automated repair have focused on:

I Fraction of defects repaired [1,2]

I Computational resources required to repair defects [3,4]

I Correctness and quality of generated patches [5,6,7]

I Patch maintainability [8]

I Repair acceptability [9,10]

[1] Ke et al. Repairing programs with semantic code search. ASE. 2015.
[2] Qi et al. An analysis of patch plausibility and correctness for G&V patch generation systems. ISSTA. 2015.
[3] Le Goues et al. The ManyBugs and IntroClass benchmarks for automated repair of C programs. TSE. 2015
[4] Weimer et al. Leveraging program equivalence for adaptive program repair: models and first results. ASE. 2013
[5] (DBGBench) Boehme, et al. Where is the bug and how is it fixed? an experiment with practitioners. FSE. 2017.
[6] Smith et al. Is the cure worse than the disease? Overfitting in automated program repair. FSE. 2015.
[7] Pei et al. Automated fixing of programs with contracts. TSE. 2014.
[8] Fry et al. A human study of patch maintainability. ISSTA. 2012.
[9] Durieux et al. Automatic repair of real bugs: An experience report on the Defects4J dataset. 2015.
[10] Kim et al. Automatic patch generation learned from human-written patches. ICSE. 2013.



Motivation

Defect-1 patched
Defect-2 patched
Defect-3 not patched
Defect-4 patched
Defect-5 patched
Defect-6 not patched
Defect-7 patched
Defect-8 patched
Defect-9 not patched
Defect-10 not patched

Defect-1 not patched
Defect-2 not patched
Defect-3 patched
Defect-4 not patched
Defect-5 not patched
Defect-6 not patched
Defect-7 not patched
Defect-8 not patched
Defect-9 patched
Defect-10 patched

YetAnotherFix 
fixes 60% of the defects 

ThisNeverEndsFix 
fixes 30% of the defects

Which automated program repair technique is better?

How about now?



Motivation

Defect-1 patched
Defect-2 patched
Defect-3 not patched
Defect-4 patched
Defect-5 patched
Defect-6 not patched
Defect-7 patched
Defect-8 patched
Defect-9 not patched
Defect-10 not patched

Defect-1 not patched
Defect-2 not patched
Defect-3 patched
Defect-4 not patched
Defect-5 not patched
Defect-6 not patched
Defect-7 not patched
Defect-8 not patched
Defect-9 patched
Defect-10 patched

YetAnotherFix 
fixes 60% of the defects 

ThisNeverEndsFix 
fixes 30% of the defects

Hard to fix 
defects

Which automated program repair technique is better?

How about now?



Which is harder to fix?

Which is more important to fix?

Invalid error message

Invalid memory access
(Application crash)

Easy and less important Hard and more important

How do we measure hardness and importance of a defect?



Which is harder to fix?

Which is more important to fix?

Invalid error message
Invalid memory access
(Application crash)

Easy and less important Hard and more important

How do we measure hardness and importance of a defect?



Which is harder to fix? Which is more important to fix?

Invalid error message
Invalid memory access
(Application crash)

Easy and less important Hard and more important

How do we measure hardness and importance of a defect?



Which is harder to fix? Which is more important to fix?

Invalid error message
Invalid memory access
(Application crash)

Easy and less important Hard and more important

How do we measure hardness and importance of a defect?



Goals of this study

A methodology for measuring a defect’s hardness and importance.

An evaluation of whether automated program repair techniques
repair hard and important defects.



Measuring hardness and importance of a defect

bug report

Developer-written patch Test-suite

Other parameters may also exist.



Measuring hardness and importance of a defect

bug report

Developer-written patch

Test-suite

Other parameters may also exist.



Measuring hardness and importance of a defect

bug report

Developer-written patch Test-suite

Other parameters may also exist.



Measuring hardness and importance of a defect

bug report

Developer-written patch Test-suite

Other parameters may also exist.



Measuring hardness and importance of a defect

Analyzed 8 popular bug-tracking systems

Analyzed 3 popular open-source code repositories

Analyzed 2 defect benchmarks

Defects4J ManyBugs



Measuring hardness and importance of a defect

5 defect characteristics defined in terms of 11 abstract parameters

Priority

Time to Fix

Versions

File count

Line count

Reproducibility

Failing test 
count

Relevant test 
count

Test suite 
coverage

Dependents 
count

Patch 
modification 

type

Defect Importance Defect Complexity Test Effectiveness Defect Independence Developer-written 
patch characteristics



Evaluating repair techniques along new dimensions

Defects4J
(224 defects)

ManyBugs
(185 defects)

Importance Complexity Test Effectiveness Independence Patch
Characteristics

I 2 defect benchmarks: Defects4J and ManyBugs
I Semi-automatically annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.

I Existing repairability and repair quality results of 7 automated
repair techniques.

I Identify if repairability of a repair technique correlates
(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.



Evaluating repair techniques along new dimensions

Defects4J
(224 defects)

ManyBugs
(185 defects)

AE GenProg Kali Prophet SPR
TrpAuto-
Repair

Nopol

I 2 defect benchmarks: Defects4J and ManyBugs
I Semi-automatically annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.
I Existing repairability and repair quality results of 7 automated

repair techniques.

I Identify if repairability of a repair technique correlates
(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.



Evaluating repair techniques along new dimensions

Defects4J
(224 defects)

ManyBugs
(185 defects)

I 2 defect benchmarks: Defects4J and ManyBugs
I Semi-automatically annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.
I Existing repairability and repair quality results of 7 automated

repair techniques.

I Identify if repairability of a repair technique correlates
(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.



Do repair techniques repair important defects?

Importance Complexity Test Effectiveness Patch
Characteristics

Nopol

Java

C

Priority

AE

GenProgC

KaliC

Prophet

SPR

TrpAutoRepair

GenProgJ

KaliJ

Java repair techniques are more likely to repair defects that
are important for developers.



Do repair techniques repair hard defects?

Importance Complexity Test Effectiveness Patch
Characteristics

C

Java

File count

Java

C
Line count

AE

GenProgC

KaliC

Prophet

SPR

TrpAutoRepair

GenProgJ

KaliJ

Nopol

C repair techniques are less likely to repair defects that
required developers to write more code.



Do repair techniques repair defects with effective test suites?

Importance Complexity Test Effectiveness Patch
Characteristics

C

Java

Failing test count

Java

C
Relevant test count

AE

GenProgC

KaliC

Prophet

SPR

TrpAutoRepair

GenProgJ

KaliJ

Nopol

Java repair techniques are less likely to repair defects with
effective test suites.



What patch modification types are challenging for automated repair?

Importance Complexity Test Effectiveness Patch
Characteristics

9 Patch modification types [1]

adds one or more if statements

adds one or more loops

adds one or more new variables

changes one or more conditionals

adds one or more method calls
changes one or more method signatures

changes one or more data structures or types

changes one or more method arguments

adds one or more new methods

Defects that required developers to add loops or a
new method call, or change a method signature are
challenging for automated repair techniques to patch.

[1] Le Goues et al. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE TSE 2015.



What about correct patches?

AE

GenProgC

KaliC

Prophet

SPR

TrpAutoRepair

GenProgJ

KaliJ

Nopol

0 20 40 60 80 105 135 165 195 225

#correct patches
Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Only Prophet (15) and SPR (13) generate sufficient number of
correct patches.



What about correct patches?

Prophet is less likely to produce patches for more complex
defects, and even less likely to produce correct patches for
the same defects.



What about correct patches?

Prophet is less likely to produce patches for more complex
defects, and even less likely to produce correct patches for
the same defects.



Contributions

Methodology to measure
importance and hardness of
a defect.

Methodology to evaluate automated
program repair techniques along new
dimensions.

Evaluation of 7 automated program repair techniques on 409
real-world defects.

How do we define hardness and importance of a defect?

5 defect characteristics defined in terms of 11 abstact parameters

Priority

Time to Fix

Versions

File count

Line count

Reproducibility

Failing test 
count

Relevant test 
count

Test suite 
coverage

Dependents 
count

Patch 
modification 

type

Defect Importance Defect Complexity Test Effectiveness Defect Independence Developer-written 
patch characteristics

12 / 22

How do we evaluate automated program repair techniques
along new dimensions?

Defects4J
(224 defects)

ManyBugs
(185 defects)

I 2 defect benchmarks: Defects4J and ManyBugs
I Annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.
I Existing repairability and repair quality results of 7 automated

repair techniques.
I Identify if repairability of a repair technique correlates

(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.

I Some defects were not linked to bug reports.
I Repair techniques produce too few correct patches.

Our analysis uses all patches instead, as an estimate.

13 / 22



Contributions

Methodology to measure
importance and hardness of
a defect.

Methodology to evaluate automated
program repair techniques along new
dimensions.

Evaluation of 7 automated program repair techniques on 409
real-world defects.

How do we define hardness and importance of a defect?

5 defect characteristics defined in terms of 11 abstact parameters

Priority

Time to Fix

Versions

File count

Line count

Reproducibility

Failing test 
count

Relevant test 
count

Test suite 
coverage

Dependents 
count

Patch 
modification 

type

Defect Importance Defect Complexity Test Effectiveness Defect Independence Developer-written 
patch characteristics

12 / 22

How do we evaluate automated program repair techniques
along new dimensions?

Defects4J
(224 defects)

ManyBugs
(185 defects)

I 2 defect benchmarks: Defects4J and ManyBugs
I Annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.
I Existing repairability and repair quality results of 7 automated

repair techniques.
I Identify if repairability of a repair technique correlates

(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.

I Some defects were not linked to bug reports.
I Repair techniques produce too few correct patches.

Our analysis uses all patches instead, as an estimate.

13 / 22



Contributions

Methodology to measure
importance and hardness of
a defect.

Methodology to evaluate automated
program repair techniques along new
dimensions.

Evaluation of 7 automated program repair techniques on 409
real-world defects.

How do we define hardness and importance of a defect?

5 defect characteristics defined in terms of 11 abstact parameters

Priority

Time to Fix

Versions

File count

Line count

Reproducibility

Failing test 
count

Relevant test 
count

Test suite 
coverage

Dependents 
count

Patch 
modification 

type

Defect Importance Defect Complexity Test Effectiveness Defect Independence Developer-written 
patch characteristics

12 / 22

How do we evaluate automated program repair techniques
along new dimensions?

Defects4J
(224 defects)

ManyBugs
(185 defects)

I 2 defect benchmarks: Defects4J and ManyBugs
I Annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.
I Existing repairability and repair quality results of 7 automated

repair techniques.
I Identify if repairability of a repair technique correlates

(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.

I Some defects were not linked to bug reports.
I Repair techniques produce too few correct patches.

Our analysis uses all patches instead, as an estimate.

13 / 22



Recommendations

Repair research should
target defects that existing
techniques have missed.

Evaluation benchmarks need to
account for diversity of defect
complexity, importance, etc.

Repair research should evaluate if new techniques repair hard
and important defects.

Automatic Program Repair: an active research area
Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to
fix?

Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017. 2 / 22

What patch modification types are associated with an
automated repair technique’s repairability?

Importance Complexity Test Effectiveness Independence Patch
Characteristics

9 Patch modification types [1]

adds one or more if statements

adds one or more loops

adds one or more new variables

changes one or more conditionals

adds one or more method calls
changes one or more method signatures

changes one or more data structures or types

changes one or more method arguments

adds one or more new methods

Defects that required developers to add loops or a
new method call, or change a method signature are
challenging for automated repair techniques to patch.

[1] Le Goues et al. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE TSE 2015.

17 / 22

How do we evaluate automated program repair techniques
along new dimensions?

Defects4J
(224 defects)

ManyBugs
(185 defects)

Importance Complexity Test Effectiveness Independence Patch
Characteristics

I 2 defect benchmarks: Defects4J and ManyBugs
I Annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.

I Existing repairability and repair quality results of 7 automated
repair techniques.

I Identify if repairability of a repair technique correlates
(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.

I Some defects were not linked to bug reports.

I Repair techniques produce too few correct patches.
Our analysis uses all patches instead, as an estimate.

13 / 22

Annotated datasets and scripts are available at
https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData

http://people.cs.umass.edu/~mmotwani/

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData
http://people.cs.umass.edu/~mmotwani/


Recommendations

Repair research should
target defects that existing
techniques have missed.

Evaluation benchmarks need to
account for diversity of defect
complexity, importance, etc.

Repair research should evaluate if new techniques repair hard
and important defects.

Automatic Program Repair: an active research area
Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to
fix?

Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017. 2 / 22

What patch modification types are associated with an
automated repair technique’s repairability?

Importance Complexity Test Effectiveness Independence Patch
Characteristics

9 Patch modification types [1]

adds one or more if statements

adds one or more loops

adds one or more new variables

changes one or more conditionals

adds one or more method calls
changes one or more method signatures

changes one or more data structures or types

changes one or more method arguments

adds one or more new methods

Defects that required developers to add loops or a
new method call, or change a method signature are
challenging for automated repair techniques to patch.

[1] Le Goues et al. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE TSE 2015.

17 / 22

How do we evaluate automated program repair techniques
along new dimensions?

Defects4J
(224 defects)

ManyBugs
(185 defects)

Importance Complexity Test Effectiveness Independence Patch
Characteristics

I 2 defect benchmarks: Defects4J and ManyBugs
I Annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.

I Existing repairability and repair quality results of 7 automated
repair techniques.

I Identify if repairability of a repair technique correlates
(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.

I Some defects were not linked to bug reports.

I Repair techniques produce too few correct patches.
Our analysis uses all patches instead, as an estimate.

13 / 22

Annotated datasets and scripts are available at
https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData

http://people.cs.umass.edu/~mmotwani/

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData
http://people.cs.umass.edu/~mmotwani/


Recommendations

Repair research should
target defects that existing
techniques have missed.

Evaluation benchmarks need to
account for diversity of defect
complexity, importance, etc.

Repair research should evaluate if new techniques repair hard
and important defects.

Automatic Program Repair: an active research area
Is the bug important to fix?

buggy program

test suite

APR

patched program

test suite

Is the bug hard to
fix?

Is the patched program correct?

Automated program repair publications per year [1]

[1] Gazzola, Micucci, and Mariani. Automatic software repair: A survey. IEEE TSE 2017. 2 / 22

What patch modification types are associated with an
automated repair technique’s repairability?

Importance Complexity Test Effectiveness Independence Patch
Characteristics

9 Patch modification types [1]

adds one or more if statements

adds one or more loops

adds one or more new variables

changes one or more conditionals

adds one or more method calls
changes one or more method signatures

changes one or more data structures or types

changes one or more method arguments

adds one or more new methods

Defects that required developers to add loops or a
new method call, or change a method signature are
challenging for automated repair techniques to patch.

[1] Le Goues et al. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE TSE 2015.

17 / 22

How do we evaluate automated program repair techniques
along new dimensions?

Defects4J
(224 defects)

ManyBugs
(185 defects)

Importance Complexity Test Effectiveness Independence Patch
Characteristics

I 2 defect benchmarks: Defects4J and ManyBugs
I Annotated 409 defects with:

I 5 defects characteristics defined using 11 abstract parameters.

I Existing repairability and repair quality results of 7 automated
repair techniques.

I Identify if repairability of a repair technique correlates
(Somer’s Delta ∈ [−1, 1]) with each abstract parameter.

I Some defects were not linked to bug reports.

I Repair techniques produce too few correct patches.
Our analysis uses all patches instead, as an estimate.

13 / 22

Annotated datasets and scripts are available at
https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData

http://people.cs.umass.edu/~mmotwani/

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData
http://people.cs.umass.edu/~mmotwani/




Evaluation Methodology

Abstract parameter Repairability

Somers’ Delta Mann-Whitney U Test

Correlation Coeff (r), 95% CI p-value

Dependent VariableIndependent Variable

Are the two populations
Patched Vs. Unpatched
significantly different?

What is the strength of

association?


	Introduction and Motivation
	Goals
	Measuring Defect Hardness and Importance
	Evaluating repair techniques
	Results
	Importance
	Complexity
	Test Effectiveness
	Patch Characteristics
	Patch quality

	Contributions
	Recommendations
	Backup

