
Generating REST API Specifications through Static Analysis
Ruikai Huang

Georgia Institute of Technology
Atlanta, Georgia, USA

rkh@gatech.edu

Manish Motwani∗
Georgia Institute of Technology

Atlanta, Georgia, USA
motwanim@oregonstate.edu

Idel Martinez
Georgia Institute of Technology

Atlanta, Georgia, USA
imartinez@gatech.edu

Alessandro Orso
Georgia Institute of Technology

Atlanta, Georgia, USA
orso@cc.gatech.edu

ABSTRACT
Web Application Programming Interfaces (APIs) allow services to
be accessed over the network. RESTful (or REST) APIs, which
use the REpresentation State Transfer (REST) protocol, are a pop-
ular type of web API. To use or test REST APIs, developers use
specifications written in standards such as OpenAPI. However, cre-
ating and maintaining these specifications is time-consuming and
error-prone, especially as software evolves, leading to incomplete
or inconsistent specifications that negatively affect the use and
testing of the APIs. To address this problem, we present Respector
(REST API specification generator), the first technique to employ
static and symbolic program analysis to generate specifications
for REST APIs from their source code. We evaluated Respector on
15 real-world APIs with promising results in terms of precision and
recall in inferring endpoint methods, endpoint parameters, method
responses, and parameter attributes, including constraints leading
to successful HTTP responses or errors. Furthermore, these results
could be further improved with additional engineering. Comparing
the Respector-generated specifications with the developer-provided
ones shows that Respector was able to identify many missing end-
point methods, parameters, constraints, and responses, along with
some inconsistencies between developer-provided specifications
and API implementations. Finally, Respector outperformed several
techniques that infer specifications from annotations within API
implementations or by invoking the APIs.

KEYWORDS
REST API, OpenAPI specification, Documentation, Static Analysis

1 INTRODUCTION
The REpresentation State Transfer (REST) architecture has emerged
as the main go-to approach for designing web APIs [10]. Be-
cause REST lacks a standard way of describing REST APIs, which
∗Also with Oregon State University, Corvallis, Oregon, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

makes development and testing challenging, the OpenAPI Initia-
tive created the OpenAPI specification (OAS) [33], a vendor-neutral,
portable, and open specification for REST APIs. With significant
backing from industries such as Google, Microsoft, and IBM, OAS
has become the de facto standard for describing REST APIs.

Prior research indicates that developers often fail to write and
maintain specifications for REST APIs [37, 40, 41], and the APIs in
production may therefore differ from their specification. While
there exist many API specification generation techniques (e.g.,
AppMap [38], Swagger Inspector [55], ExpressO [48], Springfox [44],
springdoc-openapi [52], ApiCarv [59]), these techniques have lim-
ited applicability and require developers to perform manual work,
such as adding to the API source code technique-specific anno-
tations or manually deploy the API and invoke all its endpoints.
Further, such techniques typically produce relatively simple speci-
fications that developers have to manually enhance. For example, a
recent technique (ApiCarv [59]) generates OASs describing only
HTTP methods and endpoint paths without describing all possible
path parameters, parameter constraints, and responses.

This paper presents Respector (REST API specification genera-
tor), the first technique that employs static and symbolic program
analysis to generate specifications for REST APIs from their imple-
mentations in an automated way. Given a REST API implementa-
tion as input, Respector produces an OAS as output by performing
a set of steps. First, it determines the REST framework used by
the API and performs static analysis to identify the API’s endpoint
methods. For each method, Respector then gathers its metadata
(method URI, HTTP method, response type and status code(s)) and
extracts its parameters. It then performs symbolic analysis to iden-
tify and add to the specification the conditions under which the
method returns a success, an error, or terminates with an uncaught
exception. Additionally, Respector identifies within the methods
externally visible variables that are used before being defined (i.e.,
their value is externally provided) and/or written within the method
(i.e., their value can be used by other methods) and uses this in-
formation to determine dependences between methods. Finally,
Respector produces an OAS for the REST API using the information
extracted by the analysis.

The OASs produced by Respector are richer than traditional
OASs because they can also describe (1) parameters encapsulated
in request bodies and those defined using controller class fields,
(2) parameter constraints that cause successful/erroneous API invo-
cations, (3) responses (status code and schema) implemented for the
endpoint method, and (4) dependencies between endpoint methods

https://doi.org/XXXXXXX.XXXXXXX

ICSE 2024, April 2024, Lisbon, Portugal Ruikai Huang, Manish Motwani, Idel Martinez, and Alessandro Orso

through global variables. This additional information can be useful
for web developers using the API and for developers and testing
tools when verifying the API implementation.

To validate our approach, we developed a Respector prototype
that generates OAS v3.0 specifications for Java-based REST APIs
developed using two popular REST frameworks: Spring Boot [50]
and Jersey [22]. We then evaluated Respector on 15 real-world,
open-source APIs, and answered the following research questions:

RQ1: Can Respector generate accurate specifications? For
the APIs we considered, Respector generated specifications with,
on average, 100% precision and 98.6% recall in inferring endpoint
methods, 100% precision and 94.4% recall in inferring endpoint
parameters, 100% precision and 92.6% recall in inferring responses,
and 95.6% precision and 50.0% recall in inferring parameter con-
straints. Further, Respector accurately detected a total of 4,806 inter-
dependencies across 100 endpoint methods.

RQ2: How do Respector-generated specifications compare
with developer-provided specifications? For the APIs we eval-
uated, the Respector-generated specifications contained 228 end-
point methods, 2,795 parameters, 15 constraints, and 502 responses
missing from the developer-provided specifications. Respector also
identified 4 constraints that were inconsistent with the developer-
provided specifications and were confirmed by the developers.

RQ3: How does Respector compare with alternative state-
of-the-art API specification generation techniques? For the
APIs we considered, four existing techniques (AppMap [38], Swag-
ger Core [54], springdoc-openapi [52], and SpringFox [44]) failed
to detect all specification components detected by Respector. The
techniques detected only on average, 75.43% endpoint methods,
66.28% parameters, 18.35% constraints, and 63.97% responses de-
tected by Respector.

The main contributions of this paper are:

• Respector, the first static-analysis-based approach to gener-
ate OASs from REST API implementations.
• An implementation that supports two Java REST frameworks:
Spring Boot [50] and Jersey [22].
• An evaluation of Respector on 15 real-world REST APIs that
shows that (1) Respector can effectively and automatically
generate REST API specifications from API implementations,
(2) Respector-generated specifications can reveal inconsis-
tencies between developer-provided specifications and API
implementations, and (3) Respector-generated specifications
are more accurate than those generated by other existing
API specification-generation techniques.
• A replication package for our empirical evaluation is avail-
able at https://archive.softwareheritage.org/browse/origin/
https://github.com/nntzuekai/Respector.

2 MOTIVATING EXAMPLE
REST APIs use HTTP methods (GET, POST, PUT, PATCH, DELETE,
HEAD, OPTIONS, and TRACE) to expose endpoints that perform
CRUD (Create, Read, Update, Delete) operations on resources. The
APIs are implemented using REST frameworks [39], such as Spring
Boot, Jersey, Reslet, and Grails. Figure 1 shows a partial implementa-
tion of the GET /entity-networks endpoint in Senzing [11] API using
the Jersey [22] framework. The implemented class and method

1 import javax.ws.rs.*

2 @Path("/")

3 public class EntityGraphServices implements ServicesSupport {

4 @GET @Path("entity -networks")

5 public SzEntityNetworkResponse getEntityNetwork(

6 @DefaultValue("1000")@QueryParam("maxEntities") int maxEntities , ...){

7 // check for consistent entity IDs

8 try {

9 ...

10 if (buildOut < 0) { throw this.newBadRequestException(GET , uriInfo ,

timers ,"Build out must be zero or greater: " + buildOut); }

11 if (maxEntities < 0) { throw this.newBadRequestException(GET , uriInfo ,

timers ,"Max entities must be zero or greater: " + maxEntities); }

12 } catch (Exception e) {

13 e.printStackTrace ();

14 throw this.newBadRequestException(GET ,uriInfo ,timers , e.getMessage ());

15 }

16 try {

17 this.enteringQueue(timers);

18 String rawData = provider.executeInThread (() -> {

19 this.exitingQueue(timers);

20 ...

21 // parse the raw data

22 return sb.toString ();

23 });

24 ...

25 // construct the response

26 SzEntityNetworkResponse response = this.newEntityNetworkResponse(GET ,

200, uriInfo , timers , entityNetworkData);

27 // if including raw data then add it

28 if (withRaw) response.setRawData(rawData);

29 // return the response

30 return response;

31 } catch (Exception e) {

32 throw this.newInternalServerErrorException(GET , uriInfo , timers , e);

33 }

34 }}

Figure 1: Partial view of the implementation of GET /entity-
networks endpoint in Senzing API using Jersey framework.

use framework-specific annotations and libraries to specify paths,
methods, parameters, and responses (lines 2, 4, 6, 26 in Figure 1).
APIs implement checks on request parameters and return a suc-
cessful response (2XX) if the request is valid and they perform the
desired operation successfully, otherwise, they return a response
indicating a malformed request (4XX) or a server error (5XX). For
example, on lines 10–15 in Figure 1, the endpoint method checks
if the values of buildOut and maxEntities parameters are positive
and responds with a bad request if they are not. The API performs
desired operation and returns a successful/unsuccessful response
if it completes it (lines 16–30 in Figure 1) or returns a server error
response (line 32 in Figure 1) if it encounters any errors. Respector
generates OAS by statically analyzing such API implementations.

In OpenAPI 3.0, each endpoint is specified using path and an
HTTP method, and developers can define multiple methods for one
path. We denote the combination of path and method an endpoint
method. To operate on a resource, endpoint methods use parameters
or request bodies. OpenAPI provides keywords to specify parameter
attributes (name, location, data type, properties (e.g., format, default,
example), and constraints (e.g., minimum, maxLength, required)).
The constraints restrict parameter values that will yield valid HTTP
responses. For example, Figure 2 shows a partial view of the differ-
ence between developer-provided and Respector-generated OAS of
the GET /entity-networks endpoint method implemented in Figure 1.
Figure 2 (lines 9-25) shows one parameter, buildOut that the end-
point method accepts along with their properties and constraints.
Parameters are categorized into four types (path, query, header,
cookie) based on their location (e.g., line 13 in Figure 2), and HTTP

https://archive.softwareheritage.org/browse/origin/https://github.com/nntzuekai/Respector
https://archive.softwareheritage.org/browse/origin/https://github.com/nntzuekai/Respector

Generating REST API Specifications through Static Analysis ICSE 2024, April 2024, Lisbon, Portugal

1 --- Senzing_API_Developer.json

2 +++ Senzing_API_Respector.json

3 "/entity -networks ": {

4 "get": {

5 - "description ": "This operation finds ...",

6 + "description ": "",

7 - "operationId ": "findEntityNetwork",

8 + "operationId ": "33",

9 "parameters ": [{

10 "name": "buildOut",

11 - "description ": "The maximum number of degrees ...",

12 + "description ": "",

13 "in": "query",

14 "required ": false ,

15 "schema ": {

16 "type": "integer",

17 - "format ": "int8",

18 + "format ": "int32",

19 "default ": 1,

20 "minimum ": 0,

21 - "maximum ": 100

22 + "exclusiveMinimum ": false

23 }},

24 ...

25],

26 "responses ": {

27 "200": {

28 - "description ": "Successful response",

29 + "description ": "OK",

30 "content ": {

31 "application/json": {

32 "schema ": {

33 - "$ref": "#/ components/schemas/SzEntityNetworkResponse"

34 + "type": "object",

35 + "title": "com.senzing.api.model.SzEntityNetworkResponse",

36 + "properties ": {}

37 }},

38 ...

39 },

40 + "x-endpoint -constraints ": {

41 + "$ref": "#/ components/x-endpoint -constraints /~1entity -networks/get"

42 }}}

Figure 2: Partial view of the difference between developer-
provided and Respector-generated OpenAPI specification for
GET /entity-networks endpoint method in Senzing API.

requests vary based on the location. After completing a request,
APIs return an HTTP response with a status code and optional
body or message (e.g., lines 26–39 in Figure 2), where the status
codes range from 1XX-5XX [20].

Comparing Respector-generated OAS with the developer pro-
vided one (Figure 2) reveals that while Respector specification
matches most entities in the developer provided one, it detects a few
inconsistencies in the parameter properties and constraints indicat-
ing that API implementation differs from developer specification.
For example, for buildOut parameter, developers specify format
as 8-bit integer (line 17), whereas Respector detects it to be 32-bit
(line 18) from implementation (line 6 in Figure 1). Similarly, devel-
opers specify maximum as 100 (line 21) but Respector detected no
such constraint. Such inconsistencies can negatively impact the use
and testing of APIs. We submitted bug reports to verify these incon-
sistencies with API developers and they confirmed that Respector-
generated OAS is correct. Furthermore, using AppMap [38], an
existing technique to generate OAS failed to generate specification
for this endpoint method and 25 other methods in the Senzing API
(details described later in Section 4.2.3). Overall. for many APIs, Re-
spector detected many endpoint methods, parameters, constraints,
and responses that were missing in developer-provided and auto-
generated specifications but were implemented in the API source.

1 "x-endpoint -constraints": {

2 "/entity -networks": {

3 "get": {

4 "valid -path -conditions": [""],

5 "global -reads": { // global variables read by the endpoint

6 "g23": {

7 "name": "UTC_ZONE",

8 "location -details": {

9 "$ref": "#/ components/x-global -variables -info/23"

10 }},

11 ...

12 },

13 "global -writes": { // global variables written by the endpoint

14 "g26": {

15 "name": "FACTORY",

16 "assigned -values": ["new com.senzing.api.model.SzEntityData$Factory

(new com.senzing.api.model.SzEntityData$DefaultProvider ())"],

17 "location -details":{"$ref":"#/ components/x-global -variables -info/26"

}

18 },

19 ...

20 }

21 }}},

22 "x-global -variables -info": { // global vars read/written by any endpoint

23 "g10": {

24 "name": "FACTORY",

25 "id": 10,

26 "defining -class": "com.senzing.api.model.SzFlaggedRecord",

27 "locations -of-static -assignments": ["line 144, com.senzing.api.model.

SzFlaggedRecord"]

28 },

29 ...

30 },

31 "x-endpoint -interdependence": {

32 "g10": {

33 "location -details": {

34 "$ref": "#/ components/x-global -variables -info/10"

35 },

36 "read -by": {

37 "em9": {

38 "$ref": "#/ paths/~1reevaluate -entity/post"

39 },

40 ...

41 },

42 "written -by": {

43 "em1": {

44 "$ref": "#/ paths/~1data -sources~1{dataSourceCode}~1records~1{

recordId}/put"

45 }}},

46 ...

47 }

Figure 3: Partial Respector-generated enhanced OpenAPI
specification for the GET /entity-networks endpoint method.

Thus, Respector-generated specifications can complement/improve
developer-provided and auto-generated specifications.

Additionally, to assist API developers in verifying and validating
their API implementation, Respector enhances generated OAS with:
(1) parameter constraints that cannot be represented using Ope-
nAPI keywords and (2) interdependent endpoint methods based
on data dependency (reads/writes to global variables in the API
source) using our-defined keywords extending the OpenAPI 3.0.
For example, Figure 2 (line 41) points to the enhanced OAS shown in
Figure 3 that has three parts: (1) constraints on endpoint parameters,
global variables, and a combination of both (lines 1–21 in Figure 3),
(2) global variables accessed by endpoint methods along with their
defining classes and static assignments (lines 22–30 in Figure 3),
and (3) endpoint methods interdependent through global variables
(lines 31–47 in Figure 3). Respector detected 72 interdependen-
cies between endpoint methods in the Senzing API (Section 4.2.1).
For example, POST /reevaluate-entity and PUT /data-sources/ {data-
SourceCode}/records/{recordId} are interdependent (lines 37–51 in
Figure 3) through the global variable FACTORY (lines 23–28 in

ICSE 2024, April 2024, Lisbon, Portugal Ruikai Huang, Manish Motwani, Idel Martinez, and Alessandro Orso

Figure 3). This information can be extremely useful to improve
automated API testing by generating different operation sequences
of the interdependent endpoint methods to test the API.

3 THE RESPECTOR APPROACH
This section details the steps of our approach (Figure 4).

REST API

framework

specification database

REST API
implementation

Identify
REST framework

Identify controller
classes, endpoint

methods, parameters,
and responses

Identify feasible path
constraints leading to valid
responses and track global

reads and writes

Simplify path constraints
leading to valid responses

Generate OAS for

endpoint method

Add

endpoint methods'

OAS to the

skeleton OAS

Generate

skeleton OAS

for API

Respector

legend

Respector

input

manual

process

iterative

process

OAS for REST API
Respector

output

Section 3 Step-1

Section 3
prelimary step

Section 3 Step-1 Section 3 Step-2

Section 3 Step-3

Section 3 Step-4Section 3 Step-5Section 3 Step-5

Figure 4: Overview of the Respector approach.

Preliminary Step: REST Framework database creation.
The documentation of annotation-based REST API frameworks
describe: (1) packages implementing annotations and handling of
HTTP requests and responses, (2) framework-specific annotations
to specify controllers, methods, operations, and parameters, and
(3) library methods/objects to access request body parameters and
define HTTP status codes. We create a database of these patterns
by studying the documentation of two widely used Java-based
frameworks: Spring Boot [35, 51] and Jersey [12, 13]. The resulting
database stores package name patterns, annotation semantics, and
library objects/methods for request body parameters, and response
creation. The database includes 2 class annotations, 14 method an-
notations, 11 parameter annotations, 33 library methods, 101 library
objects for response creation, and 3 library methods for accessing
request body parameters. This step is a one-time effort and took
the authors less than two days for the two frameworks considered.
Respector uses this database to detect these patterns in API source
code to extract necessary information for generating specifications.
The database does not need to be frequently updated as framework
specifications do not change as often as their implementations.

Step-1: Identifying controller classes, endpoint methods,
parameters, and responses. Respector infers the API’s frame-
work from the imported library members and the annotations used
in the API source using patterns stored in the framework database.
For example, from import javax.ws.rs.* (line 1 in Figure 1) and anno-
tations @Path, @GET, and @QueryParam (lines 2, 4, 6 in Figure 1)
Respector infers that Senzing API uses Jersey framework. Next,
Respector uses Algorithm 1 to extract controller classes, endpoint
methods, parameters, and responses. The algorithm takes as input
API class files and framework database, and outputs a data structure
storing all information required to generate specification.

Algorithm 1: Extracting controller classes, endpoint meth-
ods, parameters, and responses
Input: Compiled class files (CF), Framework database (DB)
Output: Data structure storing controller classes and their associated methods,

parameters, and responses (CC)
1 𝐶𝐶 ← ∅; // initialize set of controller classes

2 for each class𝐶 in𝐶𝐹 do
3 if isAnnotated(𝐶 , 𝐷𝐵) then
4 𝐶 .paths← getClassURI(𝐶 , 𝐷𝐵);
5 for each method𝑀 in class𝐶 do
6 if isAnnotated(𝑀 , 𝐷𝐵) then
7 𝑀 .metadata← getMethodInfo(𝑀 ,𝐷𝐵);

// get endpoint method URI, HTTP method, response type

amd status code(s)

8 for each parameter 𝑃 of method𝑀 do
9 if isAnnotated(𝑃 , 𝐷𝐵) then
10 𝑃 .metadata← getParameterInfo(𝑃 ,𝐷𝐵);

// get parameter name, location, type,

default value, and required attributes

11 𝑀 .addParameter(𝑃);
// store parameter info of endpoint method

12 else if isRawRequestBody(𝑃 , 𝐷𝐵) then
13 𝑅𝑒𝑞𝑃 ← getReqParam(𝑀 , 𝑃 , 𝐷𝐵);
14 𝑀 .addParameters(𝑅𝑒𝑞𝑃) // store parameters’

info specified in raw request body

15 else
16 𝑅𝑒𝑞𝑆𝑐ℎ𝑒𝑚𝑎← getSchema(𝑃);
17 𝑀 .addParameters(𝑅𝑒𝑞𝑆𝑐ℎ𝑒𝑚𝑎) // store

parameters’ converted from request body

18 𝑟𝑒𝑡𝑇 𝑦𝑝𝑒← getReturnType(𝑀 .metadata);
19 𝑀 .responseSchema← getSchema(𝑟𝑒𝑡𝑇 𝑦𝑝𝑒);
20 𝐶 .addEndPointMethod(𝑀);
21 for each field 𝐹 in class𝐶 do
22 if isAnnotated(𝐹 , 𝐷𝐵) then
23 𝐹 .metadata← getFieldInfo(𝐹 , 𝐷𝐵);
24 𝐶 .addFieldParams(𝐹);
25 𝐶𝐶 .add(𝐶);
26 manageSubResources(𝐶𝐶); // resolve endpoint URIs

27 Procedure getReqParam(𝑀 , 𝑃 , 𝐷𝐵)
28 RM← reachableFrom(𝑀); // methods invoked by 𝑀

29 reqParams← ∅;
30 for each method𝑀 in 𝑅𝑀 do
31 for each call-site𝐶 in𝑀 do
32 if callSiteAccessesParam(𝐶 , 𝑃 , 𝐷𝐵) then
33 reqParams.add(extractBodyParam(𝐶 , 𝑃 , 𝐷𝐵));
34 return reqParams;
35 Procedure getSchema(Type)
36 if isUserDefinedClass(𝑇𝑦𝑝𝑒) then
37 schema← {};
38 for each field 𝐹 in𝑇𝑦𝑝𝑒 do
39 schema.append(getSchema(𝐹)); // recursive call

40 return schema;
41 else
42 return convertIntoOpenAPISchema(𝑇𝑦𝑝𝑒);

Extracting controller classes. To extract controller classes, Respec-
tor scans all API classes and detects the ones using framework-
specific class annotations. For each such class, it extracts the URI
bound to it from the annotation (line 2–4 in Algorithm 1). For ex-
ample, Respector identifies the controller class EntityGraphService
from the annotation @Path(“/”) (line 2 in Figure 1) and records the
URI path (/) bound to the controller class.

Extracting methods. For each identified controller class, Respec-
tor scans all its methods to detect those using framework-specific
method annotations (e.g.,@Path and@GET in line 4 in Figure 1).
For each such method, Respector extracts the method’s path and
HTTP method from its annotations, as well as the return type and
response status codes (e.g., 200, InternalServerError from lines 26
and 32 in Figure 1) using the framework information stored in
the database and the method’s return type (e.g., in Jersey, the sta-
tus code of an endpoint returning null response should be 204)
(lines 5–7 in Algorithm 1).

Generating REST API Specifications through Static Analysis ICSE 2024, April 2024, Lisbon, Portugal

Algorithm 2: Identifying URI paths for endpoint methods
in REST APIs that use sub-resources.
Input: Data structure storing controller classes and their associated methods, parameters,

and responses (CC)
Output: URI paths to access endpoint methods using sub-resources

1 Procedure manageSubResources(CC)
2 linkSuperResources(CC);
3 for each controller class𝐶 in CC do
4 for each endpoint method𝑀 in𝐶 do
5 𝑆𝑅← getSuperResources(𝑀);
6 𝑀 .metadata← identifyFullPaths(𝑀 , 𝑆𝑅);
7 Procedure linkSuperResources(𝐶𝐶)
8 for each endpoint method𝑀 in CC.getAllEndpointMethods() do
9 if returnType(𝑀) in𝐶𝐶 then

// if endpoint method returns an instance of controller

class

10 C← returnType(𝑀);
11 for each method𝑀𝑐 in C.getEndPointMethods() do
12 𝑀𝑐 .addSuperResource(𝑀);
13 CC.removeEndpointMethod(𝑀);
14 Procedure identifyFullPaths(M, SR)
15 URIprefixes← ∅;
16 𝐶𝑀 ← definingClass(𝑀);
17 URIprefixes← URIprefixes ∪𝐶𝑀 .paths;
18 for each method𝑀𝑝 in super resources 𝑆𝑅 do
19 𝑆𝑅𝑝 ← getSuperResources(𝑀𝑝)
20 URIprefixes← URIprefixes ∪
21 identifyFullPaths(𝑀𝑝 , 𝑆𝑅𝑝); // recursive call

22 if URIprefixes = ∅ then URIprefixes← {""};
23 methodPaths←𝑀 .getURIPaths();
24 if methodPaths = ∅ then methodPaths← {""};
25 fullPaths← ∅;
26 for each path prefix 𝑃𝑖 in URIprefixes do
27 for each method path 𝑃 𝑗 in methodPaths do
28 fullPaths.add(Concatenate(𝑃𝑖 , 𝑃 𝑗));
29 return fullPaths

Extracting parameters. For each identified method, Respector
scans all its parameters to identify those using framework-specific
parameter annotations (e.g., @QueryParam in line 6 in Figure 1).
For each such parameter, Respector extracts its name, location, type,
default, format and required attributes from the annotations (lines 8–
10 in Algorithm 1). Unlike existing OAS generation techniques,
Respector also detects parameters encapsulated in request bodies
instead of using annotations. For this, Respector applies specific pro-
cedures based on whether the request body’s class is implemented
by framework (e.g.,WebRequest from Spring Boot, HttpServletRe-
quest from Jakarta Servlet [17]) or is user-defined and deserialized
by framework to fetch parameters (e.g., using @ModelAttribute
in SpringBoot [35] and Entity Providers in Jersey [13]). Respector
identifies the type by checking it against the framework-specific
classes stored in the database. If the type is framework-specific,
Respector executes the getReqParam procedure (lines 12–13 in Algo-
rithm 1) to identify all methods that are directly or indirectly called
by this method and checks if any of those methods invoke any
framework-specific library methods (also stored in the database)
to access the request body parameters. Respector extracts those
parameters from method invocations (line 14 in Algorithm 1). If the
type is user-defined, Respector invokes the getSchema procedure
(lines 15–16 in Algorithm 1) that deserializes the class to extract
its fields in the form of OpenAPI schema and records them as the
endpoint method’s parameters (line 17 in Algorithm 1). Finally,
Respector extracts parameters defined using controller class fields
(lines 21–24 in Algorithm 1). For example, APIs using Jersey can
define path parameters as controller class fields. For this, Respector
scans through the fields of all controller classes and extracts the

name, location, type, default, and required attributes of the ones us-
ing framework-specific parameter annotations. Respector records
this information for each controller class (line 25 in Algorithm 1).

Extracting response schema. To extract response, Respector exe-
cutes the getSchema procedure on the return type of the detected
method encoded in its metadata (line 18-19 in Algorithm 1). If the
return type is a user-defined class, Respector recursively executes
the getSchema procedure on all the fields of that class until the type
can be described using OpenAPI data types [43] (lines 36–40 in
Algorithm 1). Once the return type can be described using OpenAPI
data type, Respector generates OpenAPI schema for it (line 42 in
Algorithm 1) and records this information for the detected method.

Extracting indirect paths. To express relationships, APIs may use
nested resource URLs [56], where a request to access an endpoint
method is routed through a controller class that does not encapsu-
late that method. We call the paths to access the nested resources
indirect paths. For example, in the nested URL path /books/1/ratings
the controller class defining book resource returns a collection of
rating resources (defined in a different controller class) that belong
to the book resource with an id of 1. We call an endpoint method
that can be invoked from other controller classes the sub-resource of
those classes. To extract the correct paths bound to sub-resources,
Respector uses the manageSubResources procedure (described in
Algorithm 2) as a post-processing step (line 26 in Algorithm 1).
When using sub-resources, the path to access an endpoint method
is the concatenation of its super-resources (other endpoint methods
that can invoke this endpoint) and its own path. Respector uses
Algorithm 2 to detect full paths to access the endpoint method
invoked as a sub-resource by other endpoint methods. For this,
Respector first links all super resources of all endpoint methods
(line 2 in Algorithm 2) using the linkSuperResources procedure in
Algorithm 2. Next, for each endpoint method, Respector identifies
its super-resources (line 5 in Algorithm 2) and uses them to com-
pute all possible full paths that can access the endpoint method.
For this, Respector uses the identifyFullPaths procedure (line 5 in
Algorithm 2) that uses the path of the endpoint method and those
of its super-resources to recursively compute all possible full paths
that can access the endpoint method. As multiple paths bound to
the same endpoint method use different operations and parameters,
Respector generates separate specification for each full path. After
extracting endpoint methods, parameters, and responses Respector
derives parameter constraints in Step-2.

Step-2: Identifying feasible paths and path constraints
leading to successful responses and tracking read/write ac-
cesses to global variables. To derive parameter constraints that
lead to successful or valid responses, Respector symbolically an-
alyzes feasible paths starting from the entry point of the method
to the statement that returns a response or throws an uncaught
exception. This process generates path constraints (PC) and records
any reads/writes made to global variables, which is used to infer
interdependency between methods as described later in Step-5. A
PC expresses constraints on the symbolic variables that must be
satisfied for execution to reach a specific point in the program. Ev-
ery time the execution follows a branch whose predicate involves
symbolic values, the PC is suitably updated. A PC is represented as
a conjunction of constraints (𝑐1 ∧ 𝑐2 ∧ ... ∧ 𝑐𝑛), where each 𝑐𝑖 is a
constraint on one or more symbolic variables. The PCs for paths

ICSE 2024, April 2024, Lisbon, Portugal Ruikai Huang, Manish Motwani, Idel Martinez, and Alessandro Orso

Algorithm 3: Symbolically analyzing endpoint method to
derive constraints leading to valid responses
Input: Endpoint method (M), Inter-procedural control flow graph (ICFG), Framework

database (DB)
Output: Path constraints leading to valid responses (ValidPC), Path constraints leading to

invalid responses (InvalidPC), Global variables read by endpoint
method (GlobalReads), Global variables written by endpoint
method (GlobalWrites)

1 𝑉𝑎𝑙𝑖𝑑𝑃𝐶← ∅; 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑃𝐶← ∅;𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑎𝑑𝑠← ∅;𝐺𝑙𝑜𝑏𝑎𝑙𝑊𝑟𝑖𝑡𝑒𝑠← {};
2 𝑆𝑦𝑚𝑆𝑡𝑜𝑟𝑒← ∅; // stores symbolic vars and values

3 𝑐𝑢𝑟𝑟𝑃𝐶← ∅; // stores current path constraints

4 𝑁𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘 ← {}; // stack to store the snapshot of traversal state at a

branching node

5 while DFSTraverse(ICFG(M)) do
6 𝑁 ← current node in traversal;
7 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ ← current path in traversal;
8 if 𝑁 is an Assignment node then
9 𝑁𝑅𝐻𝑆 ← updateSymStore(𝑁𝐿𝐻𝑆 , 𝑁𝑅𝐻𝑆);

10 SymStore[𝑁𝐿𝐻𝑆]← 𝑁𝑅𝐻𝑆 ;
11 if 𝑁𝐿𝐻𝑆 is a global variable then
12 GlobalWrites[𝑁𝐿𝐻𝑆].add(𝑁𝑅𝐻𝑆);
13 if 𝑁𝑅𝐻𝑆 is a global variable then
14 GlobalReads.add(𝑁𝑅𝐻𝑆);
15 else if 𝑁 is a Branch node then
16 NodeStack.push(𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑁 , 𝑆𝑦𝑚𝑆𝑡𝑜𝑟𝑒 , 𝑐𝑢𝑟𝑟𝑃𝐶);
17 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 , 𝑐𝑜𝑛𝑑 ← getFeasibleBranch(𝑁 , 𝑐𝑢𝑟𝑟𝑃𝐶);
18 𝑐𝑜𝑛𝑑′ ← substituteSymVars(𝑐𝑜𝑛𝑑 , 𝑆𝑦𝑚𝑆𝑡𝑜𝑟𝑒);
19 𝑐𝑢𝑟𝑟𝑃𝐶 = 𝑐𝑢𝑟𝑟𝑃𝐶 ∧ 𝑐𝑜𝑛𝑑′ ;
20 continueTraverse(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒);
21 else if 𝑁 is a Return node then
22 if 𝑁 returns a response then
23 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ.𝑠𝑡𝑎𝑡𝑢𝑠𝐶𝑜𝑑𝑒← getResponseCode(𝑁 , 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝐷𝐵);
24 if isValid(𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ.𝑠𝑡𝑎𝑡𝑢𝑠𝐶𝑜𝑑𝑒) then
25 𝑉𝑎𝑙𝑖𝑑𝑃𝐶 .add(𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑐𝑢𝑟𝑟𝑃𝐶);
26 else
27 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑃𝐶 .add(𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑐𝑢𝑟𝑟𝑃𝐶);
28 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑁 , 𝑆𝑦𝑚𝑆𝑡𝑜𝑟𝑒 , 𝑐𝑢𝑟𝑟𝑃𝐶← backtrack(𝑁𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘);
29 continueTraverse(𝑁);
30 else if 𝑁 throws an exception then
31 if 𝑁 has catch block then
32 𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑁 , 𝑆𝑦𝑚𝑆𝑡𝑜𝑟𝑒 , 𝑐𝑢𝑟𝑟𝑃𝐶← backtrackWithException(𝑒 ,

𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑁𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘);
33 continueTraverse(𝑁);
34 else
35 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑃𝐶 .add(𝑐𝑢𝑟𝑟𝑃𝑎𝑡ℎ, 𝑐𝑢𝑟𝑟𝑃𝐶);

ending in successful responses are the conditions that must hold
to get successful responses. For all other paths, the PCs denote
conditions that lead to unsuccessful responses. For example, there
are two PCs starting from the entry point (line 7) and ending in the
uncaught exception (line 14) in Figure 1:
PC-1: buildOut<0
PC-2: !(buildOut<0) ∧∧∧ maxEntities<0
Both PCs describe conditions that lead to unsuccessful responses.

Algorithm 3 describes this process. To perform this analysis,
Respector constructs an inter-procedural control flow graph (ICFG)
of the API source using Soot [57], as a one-time pre-processing step.
The algorithm takes as input an endpoint method (M), the ICFG,
and the framework database (DB) to compute: (1) ValidPC, the set of
path constraints leading to successful responses, (2) InvalidPC, the
set of path constraints leading to unsuccessful responses, (3) Global-
Reads, the set of global variables read by the endpoint method, and
(4) GlobalWrites, a map of global variables written by the endpoint
method containing the set of values assigned to them. Respector
traverses the ICFG in a depth-first manner starting from the entry
point of themethod until reaching a statement that either returns an
HTTP response or exits the method due to an uncaught exception.

During traversal, Respector maintains (1) SymStore, a map to
store the values of symbolic variables for endpoint parameters,
global and local variables, (2) currPC, a list to store the PCs of the

current path, and (3) NodeStack, a stack to store the traversal state
at branching nodes to backtrack after traversing a branch.

When Respector encounters an assignment node, it recursively
substitutes the assigned value (RHS) in the assignment using Sym-
Store and adds the updated assignment node to SymStore (lines 8–10
in Algorithm 3). If the assignment contains invocations to methods
that are defined in external libraries, Respector does not analyze
them. If the assigned variable (LHS) is a global variable, Respector
records its value in GlobalWrites. If the assigned value (RHS) uses a
global variable, Respector adds that global variable to GlobalReads
(lines 11–14 in Algorithm 3).

When Respector encounters a branch node, it first saves the
current path, ICFG node, SymStore, and the path constraints in
NodeStack (line 16 in Algorithm 3). It then uses Z3 SMT solver [16]
to identify a feasible branch, which is a non-visited branch whose
condition does not conflict with the collected PCs (line 17 in Algo-
rithm 3). Filtering out non-feasible branches significantly reduces
the search space. For the feasible branch, Respector recursively
substitutes the variables in the condition using the SymStore, adds
the updated condition to the path constraints (lines 18–19 in Al-
gorithm 3), and continues the traversal along the feasible branch
(line 20 in Algorithm 3).

When Respector encounters a return node, it extracts the re-
sponse status code and determines whether it maps to a successful
or unsuccessful response using the framework database (lines 21–
23 in Algorithm 3). It then adds the current path and PCs to ValidPC
or InvalidPC, accordingly (line 24–27 in Algorithm 3). To backtrack
the traversal after reaching a return node, Respector uses NodeStack
to find the last branching node with at least one non-visited branch,
resets the traversal state, and resumes traversal from that branching
node (line 28–29 in Algorithm 3).

When Respector encounters a throw statement, it checks if a
catch block exists in the current path by traversing the ICFG, which
contains all the associated try-catch blocks. If it does, Respector
jumps to the catch block and continues its traversal (lines 31–33
in Algorithm 3); otherwise, the exception is considered to lead to
an unsuccessful response, and the corresponding status code is
inferred using the framework database, and the current path and
PCs are added to InvalidPC (line 35 in Algorithm 3).

To address the path explosion issue when analyzing loops and
recursions, Respector ignores all back-edges by unrolling loops once
and dropping paths with recursive calls. Further, Respector uses an
empirically determined threshold of 5, 000 on the maximum number
of feasible paths per endpoint method to analyze in order to scale
on large code bases. After gathering path constraints, Respector
simplifies them to derive the parameter constraints required to
produce valid responses as described next.

Step-3: Simplifying path constraints leading to valid re-
sponses for an endpoint method.

The OpenAPI standard describes constraints on API parameters
needed for valid responses (recall Section 2). Respector uses Algo-
rithm 4 to simplify PCs and express them using OpenAPI keywords.
The algorithm takes an endpoint method (M) and a set of feasible
paths and PCs leading to successful responses (ValidPC) as input
and outputs constraints imposed on endpoint parameters (𝐶𝑝) or
global variables (𝐶𝑔). Other than using exclusively endpoint param-
eters or global variables, some constraints that must hold true for

Generating REST API Specifications through Static Analysis ICSE 2024, April 2024, Lisbon, Portugal

Algorithm 4: Simplifying path constraints
Input: Endpoint method (M), Path constraints leading to valid responses (𝑉𝑎𝑙𝑖𝑑𝑃𝐶)
Output: Constraints on endpoint parameters (𝐶𝑝), Constraints on global variables (𝐶𝑔),

Constraints that are not part of𝐶𝑝 and𝐶𝑔 (𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)
1 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝐿𝑖𝑠𝑡 ←𝑀.getAllEndPointParameters();
2 𝐶𝑝 ← simplifyConstraints(𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝐿𝑖𝑠𝑡 ,𝑉𝑎𝑙𝑖𝑑𝑃𝐶 , 𝑍3)
3 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑖𝑠𝑡 ←𝑀.getAllGlobals();
4 𝐶𝑔 ← simplifyConstraints(𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑖𝑠𝑡 ,𝑉𝑎𝑙𝑖𝑑𝑃𝐶 , 𝑍3)
5 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ← ∅
6 for each (𝑃 , 𝑃𝐶) in𝑉𝑎𝑙𝑖𝑑𝑃𝐶 do
7 for each constraint 𝑐 in 𝑃𝐶 do
8 if 𝑐 exists in AllPaths(𝑉𝑎𝑙𝑖𝑑𝑃𝐶) then
9 if 𝑐 has multipleVars() then
10 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.add(𝑐);
11 else if !𝑐.containtsEndpointParameters() and !𝑐.containtsGlobals() then
12 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠.add(𝑐);
13 Procedure simplifyConstraints(VarList, ValidPC, SMTSolver)
14 𝑣𝑎𝑟𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← {}
15 for each variable 𝑘 in𝑉𝑎𝑟𝐿𝑖𝑠𝑡 do
16 for each (𝑃 , 𝑃𝐶) in𝑉𝑎𝑙𝑖𝑑𝑃𝐶 do
17 𝑣𝑎𝑟𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 [𝑘] ← 𝑣𝑎𝑟𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 [𝑘] ∨

extractConstraints(𝑃𝐶 , 𝑘);
18 return simplifyIntoConjunctions(𝑣𝑎𝑟𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 , 𝑆𝑀𝑇𝑆𝑜𝑙𝑣𝑒𝑟)

successful responses are defined using a combination of endpoint
parameters, global variables, and uninterpreted functions, identi-
fied as validPathConditions. For example, for all PCs that end with
successful responses (line 30 in Figure 1), the constraint (!(build-
Out<0) ∧∧∧ !(maxEntities<0)) derived from the two PCs listed in the
previous step must hold.

Each constraint in ValidPC defines a set of predicates (e.g., !(build-
Out<0)) that must all be true to produce a successful response.
However, predicates involving the same parameter that belong to
different constraints (associated with different feasible paths) do not
necessarily need to be true for producing successful response as all
constraints independently lead to valid responses. To simplify the
parameter constraints, Respector derives them from all PCs using
the simplifyPathConstraints procedure (line 13 in Algorithm 4). The
procedure takes as input a list of endpoint parameters or global
variables associated with the input method, ValidPC, and an SMT
solver. It extracts the constraints imposed on each variable from
all paths and combines them using the disjunction (∨) operator
(line 15–17 in Algorithm 4). Finally, it uses Z3 SMT solver to sim-
plify the disjunction of extracted constraints and converts them
into conjunctions (∧) [30]. This ensures that all predicates in the
simplified constraint are necessary conditions to produce successful
responses, and the simplified constraint does not contain redundant
predicates. For example, if there are three constraints imposed on
a variable 𝑥 that are extracted from three different paths, then the
set of constraints is represented using the disjunction (∨) operator
as: 𝑥 ≤ 1 ∨ 𝑥 > 0 ∨ 𝑥 < 2. Respector uses SMT solver to simplify
and converts the set into conjunctions (∧) as: 𝑥 > 0 ∧ 𝑥 ≤ 1. Re-
spector executes the simplifyPathConstraints procedure twice, once
each for endpoint parameters (lines 1–2 in Algorithm 4) and for
global variables (line 3–4 in Algorithm 4). Finally, predicates in
all simplified constraints that are defined using a combination of
endpoint parameters, global variables, or uninterpreted functions
are recorded separately in 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 (line 5–12 in Algo-
rithm 4). These predicates can assist API developers in verifying
the intended behavior of their API implementation. Since valid-
PathConditions contain the constraints on the inputs of an endpoint
method that must hold true to produce a successful response, using

these constraints, API developers can assess the implemented be-
havior of their APIs for different types of inputs and check whether
it matches their expectations.

Step-4: Generating endpoint method specification. In this
step, Respector constructs OAS for the endpoint methods using
the information derived in Steps 1–3. For each method, Respec-
tor uses its metadata to generate its OAS containing its URI path,
HTTP method, operationId, endpoint parameters, and responses.
Respector adds parameter constraints to the method specification
by first attempting to express the predicates imposing constraints
on endpoint parameters (recall Step-3) using OpenAPI keywords.
For this, Respector uses a pattern-matching approach that checks if
a predicate is not nested, identifies the operand data type, and
the operator used. Based on the type and operator, Respector
converts the predicate into an OpenAPI constraint. For example,
!(buildOut<0) is converted into {“minimum”:0, “exclusiveMini-
mum”:false} (line 20, 22 in Figure 2) using the inferred type (integer)
and operators (! and <). Similarly, Respector converts x!=null
into {"required":true} using the type (null) and the operator (!=).
Respector derives 8 of the 15 kinds of OpenAPI 3.0 constraints [34]:
minimum, maximum, exclusiveMinimum, exclusiveMaximum, re-
quired, maxLength, minLength, and multipleOf. Of the remaining
7 kinds, 4 (pattern, minItems, maxItems, uniqueItems) cannot be de-
rived from the information present in the API source and 3 (enums,
minProperties, maxProperties) require analyzing external libraries,
which is not currently supported by Respector prototype.

Optionally, Respector enhances the specification with additional
constraints that cannot be expressed using OpenAPI by using our
extended OpenAPI keywords (recall Figure 3). For example, the
constraint codes.contains(“; ”) on parameter codes cannot be ex-
pressed using any OpenAPI keywords. Respector represents such
constraints in the SMT-LIB format [9], which is both machine-
processable and human-readable, and puts them under x-valid-
path-conditions (e.g., line 4 in Figure 3). Respector populates the
enhanced specification using the GlobalReads, GlobalWrites, and
validPathConditions (from Steps 3 and 4). For each global variable
read/written by the method (listed under global-reads and global-
writes), Respector adds its name, location-details, imposed con-
straints (global-constraints), and assigned values (assigned-values).

Step-5: Generating final API specification. To produce the
final OAS, Respector generates an OpenAPI 3.0 skeleton (JSON)
that contains the following.

1 { "openapi": "3.0.0",

2 "servers": [{ "url": "http:// localhost :8080" }],

3 "info": {

4 "title": "<name of API >",

5 "version": "",

6 "description": "<name of API >"

7 },

8 "paths": {},

9 "components": {

10 "x-endpoint -constraints": {},

11 "x-global -variables -info": {}

12 "x-endpoint -interdependence": {},

13 }

14 }

Respector then adds all the endpoint method OASs (from Step 4)
under paths and their enhanced specifications under x-endpoint-
constraints (lines 1–21 in Figure 3). Next, Respector adds all the
global variables accessed by any endpoint method (obtained from

ICSE 2024, April 2024, Lisbon, Portugal Ruikai Huang, Manish Motwani, Idel Martinez, and Alessandro Orso

GlobalReads andGlobalWrites) to the x-global-variables-info by spec-
ifying each global variable’s name, id, defining class, and locations
in the API source where it is initialized (e.g., lines 22–36 in Figure 3).
Finally, Respector specifies the interdependence between endpoint
methods based on reads and writes made to global variables—for
each global variable. Two endpoint methods are interdependent if
they read or write to the same global variable. Respector identifies
all such interdependent methods and puts this information under
x-endpoint-interdependence (lines 37–43 in Figure 3). The final OAS
is OpenAPI 3.0 compliant and is ready to consume by developers
and API testing tools.

4 EMPIRICAL EVALUATION
This section describes the experiment setup to evaluate Respector
(Section 4.1) and the evaluation results (Section 4.2).

4.1 Experiment Setup
This section describes the dataset, metrics, and experiment proce-
dure we use to evaluate Respector.

Dataset: As Respector requires bytecode to generate specifi-
cations, to evaluate Respector, we collected APIs from GitHub by
searching “Java REST APIs” and selecting those that use Spring
Boot or Jersey, have developer-provided specification, have at least
5 stars, and compile successfully. This resulted in 8 APIs (Digdag,
enviroCar, Gravitee, Kafka, cassandra, Quartz, Senzing, and Ur-
Codebin). Further, we included 7 APIs from prior studies [7, 40, 41]
that have developer-provided specification and compile success-
fully. Figure 5 lists the 15 open-source Java APIs used to evaluate
Respector, which vary in size from 1K to 119K lines of code (SLOC).

Metrics: To assess Respector’s accuracy, we create a ground
truth for each subject API by analyzing both, its developer-provided
specification and source code. Multiple authors independently ana-
lyzed the API code and specification to identify the endpoint methods
(path, HTTP method) and their associated parameters (name, lo-
cation, data type), parameter constraints, and responses (successful
status code and return type). At the end of the analysis, the authors
reconciled their findings to create the ground truth. Following a re-
cent study [59], we then compare the generated specifications with
the ground truth to compute precision (correctly identified entities
over total identified entities) and recall (correctly identified enti-
ties over total correct entities) in inferring: (1) endpoint methods,
(2) parameters of the detected endpoint methods, (3) constraints
on the detected parameters, and (4) responses for the detected
endpoint methods. We manually inspect the accuracy of inferred
interdependencies by verifying them in the API source.

Experiment Procedure: We used Respector to generate speci-
fications for 15 APIs from their compiled classes that took 22 min
per API, on average, with median time of 15.97 seconds. We manu-
ally inspect the accuracy of Respector-generated specifications by
comparing them against the ground truth. We also compare the
generated specifications with developer-provided ones to identify
the entities detected and missed by Respector. As there exists no
static-analysis-based API specification generation techniques, we
compared Respector with four existing techniques AppMap [38],
Swagger Core [54], springdoc-openapi [52], and SpringFox [44],

REST API (short name) Framework SLOC Description

Digdag (Digdag) [14] Jersey 54.8K API for workload automation system to man-
age task pipelines

enviroCar (enviroCar) [18] Jersey 22.7K API to track and analyze road traffic and driving
behavior

Features-Service
(Features-Service) [42]

Jersey 1K API for managing products Feature Models

Gravitee.io (Gravitee) [25] Jersey 118.8K API management tool
Kafka REST Proxy (Kafka) [31] Jersey 19.4K API to manage data on Kafka cluster
Management API for Apache
Cassandra (cassandra) [15]

Jersey 10.5K API for managing distributed, wide-column
store, NoSQL database management system

RESTCountries
(RESTCountries) [5]

Jersey 1.3K API to get information about countries

Senzing (Senzing) [11] Jersey 30.9K API for a platform used for entity resolution
CatWatch (CatWatch) [32] Spring Boot 4K API to fetch user’s GitHub data and makes it

accessible via REST API
CWA Verification Server
(cwa) [1]

Spring Boot 2.1K Verification API for the Corona-Warn-App

OCVN (OCVN) [23] Spring Boot 24.6K API to import Vietnam public procurement data
into Open Contracting Data Standard (OCDS)
NoSQL storage

Ohsome (Ohsome) [27] Spring Boot 7.3K API for analyzing OpenStreetMap history data
ProxyPrint (ProxyPrint) [47] Spring Boot 5.5K API for managing printshops and consumers
Quartz Manager (Quartz) [21] Spring Boot 2.3K API for Quartz Scheduler
Ur-Codebin (Ur-Codebin) [19] Spring Boot 1.2K Backend API of website allowing users to share

their code with others

Figure 5: Real-world, open-source Java REST APIs used in
the evaluation. “SLOC” denotes the source lines of code.

which are closest to Respector because they use either developer-
written tests or annotations in API code to generate specifications.
While AppMap generates OAS from the information gathered by
executing API tests, the other three techniques (Swagger Core,
springdoc-openapi, and SpringFox) infer framework-specific and
technique-specific annotations at runtime to generate OAS. Note
that Unlike Respector, all four techniques require running the API
or its tests to generate specifications. We attempted to generate
specifications using the existing techniques by modifying the API’s
build configuration and deploying them locally on our server. All
experiments were run on a server with two 2.53GHz Intel Xeon
CPUs, 240 GB RAM, and Ubuntu 20.04 operating system.

4.2 Results
This section describes our evaluation results in terms of the three
research questions we ask.

4.2.1 RQ1: Can Respector generate accurate specifications? Figure 6
depicts the precision and recall of Respector in inferring endpoint
methods and their parameters, constraints, and responses.

Endpoint methods. On average, Respector achieved 100% pre-
cision and 98.60% recall across the 15 APIs analyzed, detecting
946 (99.37%) out of 952 endpoint methods. Respector failed to de-
tect 6 methods in 2 APIs that were bound to URIs dynamically using
user-defined or framework classes that create absolute URIs at run-
time (5methodsweremissed in Kafka because they use user-defined
class io.confluent.kafkarest.response.UrlFactory and 1 method in Ur-
Codebin that uses Spring Boot class setFilterProcessesUrl).

Endpoint Parameters. On average, Respector achieved 100% preci-
sion and 94.44% recall in identifying parameters across the 15 APIs,
detecting 7,977 (99.25%) out of the 8,037 parameters. Respector
failed to detect 60 parameters in 7 APIs because these are handled
using template types, overloaded HTTP methods, or framework-
specific interfaces. For example, parameters in Digdag used JsonDe-
serialize annotation (provided by an external library) that instanti-
ates an interface to accept the parameters. In enviroCar, the missed

Generating REST API Specifications through Static Analysis ICSE 2024, April 2024, Lisbon, Portugal

endpoint method endpoint parameter parameter constraint endpoint response method interdependence
API GT precision recall GT precision recall GT precision recall GT precision recall #methods #GV #IP

Digdag 41 100.00% 100.00% 96 100.00% 83.33% 4 NA 0.00% 41 100.00% 100.00% 4 (9.8%) 4 0
enviroCar 128 100.00% 100.00% 351 100.00% 57.55% 12 NA 0.00% 141 100.00% 87.94% 7 (5.5%) 17 0

Features-Service 18 100.00% 100.00% 35 100.00% 100.00% 0 - - 18 100.00% 100.00% 5 (27.8%) 1 0
Gravitee 28 100.00% 100.00% 99 100.00% 100.00% 0 - - 26 100.00% 100.00% 12 (42.9%) 21 0

Kafka 74 100.00% 93.24% 175 100.00% 88.00% 0 - - 108 100.00% 63.89% 31 (41.9%) 22 0
cassandra 50 100.00% 100.00% 94 100.00% 100.00% 3 NA 0.00% 60 100.00% 86.67% 48 (96.0%) 14 990

RESTCountries 27 100.00% 100.00% 35 100.00% 100.00% 12 100.00% 100.00% 25 100.00% 100.00% 26 (96.3%) 12 0
Senzing 34 100.00% 100.00% 156 100.00% 98.72% 17 82.35% 100.00% 34 100.00% 100.00% 33 (97.1%) 115 72

CatWatch 14 100.00% 100.00% 32 100.00% 100.00% 3 100.00% 100.00% 10 100.00% 100.00% 7 (50.0%) 11 0
cwa 5 100.00% 100.00% 14 100.00% 92.86% 0 - - 7 100.00% 71.43% 5 (100.0%) 33 0

OCVN 278 100.00% 100.00% 5,002 100.00% 100.00% 0 - - 278 100.00% 100.00% 108 (38.9%) 16 0
Ohsome 159 100.00% 100.00% 1,937 100.00% 98.81% 58 NA 0.00% 280 100.00% 93.21% 80 (50.3%) 51 3,744

ProxyPrint 75 100.00% 100.00% 150 100.00% 97.33% 0 - - 75 100.00% 100.00% 47 (62.7%) 55 0
Quartz 14 100.00% 100.00% 3 100.00% 100.00% 0 - - 14 100.00% 100.00% 10 (66.7%) 5 0

Ur-Codebin 7 100.00% 85.71% 14 100.00% 100.00% 2 100.00% 100.00% 7 100.00% 85.71% 2 (28.6%) 16 0

Average 63.47 100.00% 98.60% 535.80 100.00% 94.44% 8.50 95.59% 50.00% 74.67 100.00% 92.59% 28.33 (54.3%) 26.20 320.40
Total 952 – – 8,037 – – 111 – – 1,120 – – 425 (44.6%) 393 4,806

GT : ground truth. NA: Respector could not detect any constraints. #GV : total number of global variables detected. #IP : count of interdependent endpoint method pairs.

Figure 6: Evaluating the accuracy of Respector-generated specifications in extracting the endpoint methods, parameters,
constraints, responses, and method interdependencies for 15 REST APIs.

parameters use injectable interface (e.g., javax.ws.rs.core.UriInfo)
that provides runtime access to application and request.

Parameter constraints. On average, Respector achieved 95.59% pre-
cision and 50% recall in detecting parameter constraints across the
15 API analyzed, inferring 31 (27.93%) out of the 111 constraints.
Analyzing the 80 constraints that Respector missed, we found that
58 constraints (all of which are required:true in Ohsome API) were
implemented using functions that Z3 could not resolve (e.g., Re-
spector could not derive the constraint for groupByKey parameter
because Z3 could not interpret function splitParamOnComma in the
assignment String[] groupByKey=inputProcessor.splitParamOnCom

ma(inputProcessor.createEmptyArrayIfNull(servletRequest.getP

arameterValues("groupByKey")));). The remaining 22 constraints
were implementedwithmethods using runtime reflection or lambda
functions invoked dynamically, and therefore cannot be statically
analyzed. For example, Respector missed minItems:4 constraint for
parameter bbox in GET /measurements endpoint method of enviro-
Car API because its implementation uses user-defined BoundingBox
class with 4 fields that are validated by Jersey at runtime. Analyzing
the 3 incorrectly inferred constraints, we found that these occur in
Senzing API whose code contains many nested conditionals lead-
ing to an excessive number of feasible paths exceeding Respector’s
threshold. Therefore, the constraints derived from analyzed paths
were not necessary conditions to get valid responses.

Endpoint Responses. On average, Respector detected responses
with 100% precision and 92.59% recall across the 15 APIs analyzed,
detecting 1,038 (92.68%) out of the 1,120 responses. Analyzing the
82 responses in 6 APIs which Respector missed, we found that these
use user-defined classes or third-party libraries to return asynchro-
nous responses (e.g., GET /v3/clusters in Kafka uses AsyncResponses
class), which Respector could not statically analyze.

Method interdependence. Figure 6 (“method interdependence”)
shows that Respector detected 425 (44.6%) of the 953 endpoint
methods in the 15 APIs that read/write to 393 global variables. 100
of these 425 methods were inferred to be interdependent based on
data dependency through some global variable. Respector detected
a total of 4,806 interdependencies across these 100 methods.

endpoint method endpoint parameter parameter constraint endpoint response
API Res Dev Res Dev Res Dev (conflict) Res Dev

Digdag 41 39 80 72 0 0 (0) 41 36
enviroCar 128 77 202 84 0 0 (0) 124 44

Features-Service 18 18 35 35 0 0 (0) 18 7
Gravitee 28 26 99 99 0 0 (0) 26 21

Kafka 69 41 154 101 0 0 (0) 69 0
cassandra 50 50 94 94 0 0 (0) 52 25

RESTCountries 27 10 35 20 12 0 (0) 25 0
Senzing 34 34 154 150 14 13 (4) 34 34

CatWatch 14 6 32 28 3 1 (0) 10 6
cwa 5 5 13 4 0 0 (0) 5 3

OCVN 278 190 5, 002 2, 834 0 0 (0) 278 160
Ohsome 159 135 1, 914 1, 608 0 0 (0) 261 123

ProxyPrint 75 71 146 44 0 0 (0) 75 67
Quartz 14 10 3 3 0 0 (0) 14 6

Ur-Codebin 6 6 14 6 2 2 (0) 6 4

Total 946 718 7, 977 5, 182 31 16 (4) 1, 038 536
Dev: the count of entities extracted by Respector (Res) and present in developer-provided specifications.

Figure 7: Comparing Respector-generated and developer-
provided OpenAPI specifications for 15 REST APIs.

Respector generates accurate specifications with, on aver-
age, 100% precision and 98.6% recall in inferring endpoint
methods, 100% precision and 94.4% recall in inferring pa-
rameters, 95.6% precision and 50% recall in inferring pa-
rameter constraints, and 100% precision and 92.6% recall in
inferring responses. Further, it accurately detects 4,806 in-
terdependencies across 100 endpoint methods (RQ1).

4.2.2 RQ2: Do Respector-generated specifications cover behavior
missed by developer-written specifications? The Res columns in Fig-
ure 7 show the total numbers of endpoint methods and their as-
sociated parameters, constraints, and responses extracted by Re-
spector and the Dev columns depict the count of ones present in
the developer-provided specifications. In total, developers missed
specifying 228 endpoint methods, 2,795 parameters, 15 constraints,
and 502 responses detected by Respector. Using Respector, we
also found 4 conflicting parameter constraints (conflict in Figure 7)
between developer specifications and API implementations. We
submitted bug reports for these 4 conflicts, and developers have
confirmed that Respector-generated OAS is correct.

ICSE 2024, April 2024, Lisbon, Portugal Ruikai Huang, Manish Motwani, Idel Martinez, and Alessandro Orso

Analyzing the entities missed in the developer-provided spec-
ifications, we found that the missing endpoint methods use sub-
resources (recall Extracting indirect paths in Section 3 Step-1), which
lead to a multitude of endpoints, while the missing parameters
were encapsulated in request bodies, which are hard to manu-
ally enumerate and therefore were probably missed by develop-
ers. For example, developers specified endpoint methods GET
/tracks/{track}/measurements and GET /measurements/{measurement}
but missed GET /tracks/{track}/measurements/{measurement} in envi-
roCar API. Analyzing missed responses, we found that developers
either missed describing response schema (e.g., in RESTCountries,
developers missed schema for all 10 responses) or successful re-
sponses with non-200 status codes (e.g., in Kafka, developers missed
all 41 responses with 204 status code). Respector also detected a few
missing 200 responses (e.g., response of POST /apis/apiId/deploy-
ments endpoint method in Gravitee API is missed by developers).

Respector identifies 228 endpoint methods, 2,795 parame-
ters, 15 constraints, and 502 responses missed by developer-
provided specifications, and 4 parameter constraints that
were inconsistent with the developer specifications (RQ2).

4.2.3 RQ3: How does Respector compare with alternative state-of-
the-art API specification generation techniques? While generating
OASs for the 15 APIs (Section 4.1), AppMap failed for 7 APIs be-
cause it has limitations in recording API’s test execution (cassan-
dra, Kafka), API tests did not involve any requests and responses
(Digdag), or the API tests failed (enviroCar, Gravitee, RESTcountries,
OCVN). Because AppMap does not support generating constraints
and responses in specifications, those were not present even in
APIs for which AppMap generated OASs.

While generating OASs for the 15 APIs using Swagger Core [54]
(for Jersey APIs), springdoc-openapi [52] and SpringFox [44] (for
Spring Boot APIs), we attempted to deploy and run the 15 APIs
locally. We failed to deploy 8 APIs (Digdag, enviroCar, Gravitee,
Kafka, cassandra, Senzing, ProxyPrint, and Quartz) because of miss-
ing documentation on setting up databases, authentication failures,
and configuration to run the API similar to the prior studies [36, 61].

Figure 8 lists the 10 APIs for which at least one of the four ex-
isting techniques generated OAS. For each API, the figure shows
the number of endpoint methods, parameters, constraints, and re-
sponses extracted by Respector and their respective counts inferred
by the four techniques. For example, AppMap detected only 6
out of 34 endpoint methods in Senzing API as it could not record
Parameterized JUnit Tests testing the other 28 methods. For REST-
Countries, AppMap failed to generate OAS because the API tests
failed. Overall, AppMap worked for 8 APIs detecting 118 (36.3%)
out of 325 endpoint methods, 81 (3.5%) of the 2,311 parameters, and
none of the 31 constraints and 726 responses detected by Respec-
tor because AppMap does not support inferring constraints and
responses. Analyzing the reason why AppMap failed to detect all
the methods and parameters revealed that developer-written tests
missed testing requests using those methods and parameters.

While Swagger Core can generate OAS only for Jersey APIs,
springdoc-openapi and SpringFox can generate OAS only for Spring
Boot APIs. Swagger Core generated OASs for 2 out of 3 Jersey APIs,

detecting 40 (88.9%) out of 45 methods, 69 (98.6%) out of 70 parame-
ters, 2 (16.7%) out of 12 constraints, and 7 (16.3%) out of 43 responses
detected by Respector. springdoc-openapi generated OASs for the 3
while SpringFox generated for the 2 out 5 Spring Boot APIs. For the
3 APIs on which springdoc-openapi worked, it detected 173 (96.6%)
out of 179 methods, 1,936 (98.8%) out of 1,960 parameters, 1 (20%)
out of 5 constraints, and 270 (97.5%) out of 277 responses detected by
Respector. For the 2 APIs on which SpringFox worked, it detected
349 (79.9%) out of 437 methods, 4,442 (64.2%) of the 6,916 param-
eters, and 421 (78.1%) out of 539 responses detected by Respector.
Analyzing why Swagger Core, springdoc-openapi, and SpringFox
missed endpoint methods, parameters, constraints, and responses
(detected by Respector), we found that some were implemented in
non-annotation-based approaches (e.g., parameters encapsulated
in request bodies as mentioned in Section. 3, Step-1, Extracting pa-
rameters). Furthermore, these techniques also missed some entities
that are implemented using annotations (e.g., springdoc-openapi
failed to detect the endpoint method GET /statistics/contributors
in CatWatch API even though it uses Spring Boot annotation Re-
questMapping to specify the path). We suspect that happens due to
either conceptual limitations or potential bugs in their implemen-
tation and we have created bug reports for such scenarios.

Respector outperforms four state-of-the-art OAS genera-
tion techniques that detected only on average, 75.43% end-
point methods, 66.28% parameters, 18.35% constraints, and
63.97% responses detected by Respector (RQ3).

4.3 Discussion
In this section, we discuss the three main causes that make Re-
spector generate imprecise specifications or miss generating them.
First, Respector fails to generate all the specifications when end-
point methods use classes or methods that are out-of-scope of the
analysis. For example, Respector exhibits lower recall in detecting
parameters and responses in the enviroCar and Kafka APIs because
their endpoint methods invoke methods that are external to the
API code. Further, SpringFox allows API developers to create a
configuration file that lists additional parameters that are bound
to endpoint methods at runtime [45]. SpringFox can thus generate
these parameters while Respector fails as it does not analyze the
configuration files. As developers are aware about these param-
eters, their tests also include them and therefore AppMap is also
able to detect them. Second, Respector may generate incorrect
constraints when an endpoint method has too many nested con-
ditionals such that the total number of paths exceeds the preset
threshold to handle the path explosion problem. This occurred for
the Senzing API whose endpoint methods has > 220 paths. Third,
Respector fails to extract constraints that cannot be expressed using
the SMT solver’s vocabulary, e.g., in Ohsome, Respector failed to
generate constraints because it could not represent string operation
splitParamOnComma using Z3. Our evaluation shows that these
limiting scenarios occur less frequently in practice and overall, Re-
spector shows promising results. Further, some of these limitations
(e.g., analyzing external libraries) can be addressed by additional
engineering efforts.

Generating REST API Specifications through Static Analysis ICSE 2024, April 2024, Lisbon, Portugal

endpoint method endpoint parameter parameter constraint endpoint response

API Respector AM SC SD SF Respector AM SC SD SF Respector AM SC SD SF Respector AM SC SD SF

Features-Service 18 17 18 NA NA 35 0 35 NA NA 0 NA 0 NA NA 18 NA 7 NA NA
RESTCountries 27 ✠ 22 NA NA 35 NA 34 NA NA 12 NA 2 NA NA 25 NA 0 NA NA

Senzing 34 8 ✠ NA NA 154 11 ✠ NA NA 14 NA ✠ NA NA 34 NA ✠ NA NA
CatWatch 14 5 NA 8 ✗ 32 14 NA 8 ✗ 3 NA NA 1 ✗ 10 NA NA 4 ✗

cwa 5 5 NA ✗ ✗ 13 0 NA ✗ ✗ 0 NA NA ✗ ✗ 5 NA NA ✗ ✗
OCVN 278 ✠ NA ✗ 190 5,002 ✠ NA ✗ 2,834 0 NA NA ✗ 0 278 NA NA ✗ 160

Ohsome 159 63 NA 159 159 1,914 56 NA 1,914 1,608 0 NA NA 0 0 261 NA NA 261 261
ProxyPrint 75 7 NA ✠ ✠ 146 0 NA ✠ ✠ 0 NA NA ✠ ✠ 75 NA NA ✠ ✠

Quartz 14 10 NA ✠ ✠ 3 0 NA ✠ ✠ 0 NA NA ✠ ✠ 14 NA NA ✠ ✠
Ur-Codebin 6 3 NA 6 ✗ 14 0 NA 14 ✗ 2 NA NA 0 ✗ 6 NA NA 5 ✗

Total 630 118 40 173 349 7,348 81 69 1,936 4,442 31 — 2 1 0 726 — 7 270 421

“✗”: technique could not generate API specification; “✠”: API could not be run/tests failed; “NA”: technique not applicable.

Figure 8: Comparing Respector with four (AppMap (AM) [38], Swagger Core (SC) [54], springdoc-openapi (SD) [52], Spring-
Fox (SF) [44]) state-of-the-art API specification generation techniques that use API implementation to generate specifications.

4.4 Limitations and Threats to Validity
Respector inherits the limitations of static analysis, which include
path explosion when analyzing endpoints with many nested condi-
tionals and being unable to generate specifications when the APIs
handle endpoints dynamically. Further, when API implementations
use specific Java features such as type erasure or interfaces, Respec-
tor’s precision drops because the information required to generate
specifications (e.g., data types) is lost during compilation. Finally,
Respector prototype depends on what the Z3 solver and Soot imple-
mentations support and does not analyze code in external libraries
that prevents Respector in generating all the specifications.

We address the threat to external validity by evaluating Respec-
tor on 15 diverse real-world APIs. A recent study [24] found that
having more REST case-studies to evaluate the new approach is
an open challenge as running APIs on local machines for exper-
imentation has non trivial setup costs and can take a significant
amount of time to find and setup a large number of REST APIs for
experimentation. This finding is consistent with our experience
of creating the evaluation dataset for our study. As mentioned
in Section 4.1, our selection criteria only required that APIs use
Spring Boot or Jersey, have developer-provided specifications and
compile successfully because the Respector prototype currently
supports the Spring Boot and Jersey frameworks, and takes byte-
code as input. Since these criteria focus only on general aspects of
the APIs, we believe that they should not bias the results against or
in favor of any specific tool we consider in our analysis. We address
the threat to internal validity by multiple authors independently
analyzing Respector-generated specifications’ accuracy using the
developer-provided specifications and the API source code, and
then reconciling their analysis results. Finally, we mitigate bugs
in our code by testing Respector on dummy APIs and making our
artifacts available to enable replication of our results.

5 RELATEDWORK
API specification format. While OpenAPI [33] is commonly used
to describe REST APIs, there exist other languages such as RESTful
API Modeling Language [58] and API Blueprint [2] to describe APIs
in a human-readable format for which Respector can be extended.
API specification generation techniques. Several techniques
(e.g. SpringFox [44], BlueBird [8], ramlo [60], Talend [49], Swag-
ger Core [54], Swagger Inspector [55], AppMap [38], ExpressO [48],

springdoc-openapi [52], ApiCarv [59]) automatically generate OASs.
However, they require developers to perform additional steps to gen-
erate relatively simple specifications that developers need to manu-
ally enhance. For example, Swagger Core [54] analyzes technique-
specific and Spring Boot annotations in API source at runtime to
generate a simple OAS that does not describe all the responses and
parameter constraints. Swagger Inspector [55] and AppMap [38]
generate API specifications from the requests/responses sent/re-
ceived to/from the API endpoints by manually invoking endpoints
or running API tests, respectively. ExpressO [48] generates speci-
fication for JavaScript APIs using Express framework by running
the APIs in an isolated environment to identify their endpoints
and responses, and using Express’s structure to detect parameters.
ApiCarv [59] uses UI tests of APIs to generate OASs by inferring
endpoints dynamically and deriving parameters from the endpoint
URIs, and responses from the execution of the endpoints. Respector
outperforms these techniques by generating richer OASs containing
both basic and complex parameter constraints (that can and cannot
be expressed in OpenAPI) and interdependent endpoint methods
without requiring any manual effort. Respector also complements
tools such as Postman [46], Apiary [4], Stoplight [53], Dredd [3],
and EvoMaster [6], which allow users to design, build, model, test,
and validate APIs using their specifications.
Code analysis for REST APIs. Prior research has explored us-
ing static analysis and symbolic execution to detect interfaces in
servlets [28, 29]. However, REST APIs often have more complex
request and response formats that often use structured data formats
such as JSON or XML, and require more sophisticated parsing and
analysis than servlets. Finally, Respector addresses all the eight
limitations of existing API documentation and code analysis ap-
proaches in identifying parameter constraints [26] and improves
upon the state-of-the-art of constraint extraction techniques.

6 CONTRIBUTIONS
We presented Respector, the first static-analysis-based approach for
automatically generating REST API specifications from API imple-
mentations. Respector performs well in practice and can generate
specifications for real-world APIs with hundreds of endpoints. Our
evaluation show that Respector can be effective at generating spec-
ifications, can find previously unknown inconsistencies in mature
APIs, and can improve upon alternative state-of-the-art techniques.

ICSE 2024, April 2024, Lisbon, Portugal Ruikai Huang, Manish Motwani, Idel Martinez, and Alessandro Orso

DATA AVAILABILITY
All of our data, source code, and documentation to reproduce our
results are available at https://archive.softwareheritage.org/browse/
origin/https://github.com/nntzuekai/Respector.

REFERENCES
[1] Deutsche Telekom AG. 2022. Corona-Warn-App Verification Server.

https://github.com/EMResearch/EMB/tree/master/jdk_11_maven/em/
embedded/rest/cwa-verification. [Online; accessed March-2023].

[2] Apiary. 2020. API Blueprint. https://apiblueprint.org/documentation/
specification.html. [Online; accessed March-2023].

[3] Apiary. 2021. Dredd. https://github.com/apiaryio/dredd. [Online; accessed
March-2023].

[4] Apiary. 2023. Apiary. https://apiary.io. [Online; accessed March-2023].
[5] APILayer. 2021. REST Countries. https://github.com/EMResearch/EMB/tree/

master/jdk_8_maven/cs/rest/original/restcountries. [Online; accessed March-
2023].

[6] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with
EvoMaster. ACM Trans. Softw. Eng. Methodol. 28, 1 (2019), 37 pages. https:
//doi.org/10.1145/3293455

[7] Andrea Arcuri and Juan P. Galeotti. 2021. Enhancing Search-Based Testing with
Testability Transformations for Existing APIs. ACM Trans. Softw. Eng. Methodol.
31, 1 (2021), 34 pages. https://doi.org/10.1145/3477271

[8] Djordje Atlialp and Mathias Polligkeit. 2019. BlueBird. https://github.com/
KittyHeaven/blue_bird. [Online; accessed March-2023].

[9] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiabilitymodulo
theories (Edinburgh, UK), Vol. 13. 14.

[10] Andrei Ciortea, Olivier Boissier, Antoine Zimmermann, and Adina Magda Flo-
rea. 2017. Give Agents Some REST: A Resource-Oriented Abstraction Layer
for Internet-Scale Agent Environments. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems (São Paulo, Brazil) (AAMAS ’17).
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land, SC, 1502–1504.

[11] Senzing community. 2022. Senzing REST API. https://github.com/Senzing/
senzing-api-server. [Online; accessed March-2023].

[12] Oracle Cooperation. 2023. Package javax.ws.rs. https://docs.oracle.com/javaee/
7/api/javax/ws/rs/package-summary.html. [Online; accessed July-2023].

[13] Oracle Corporation. 2017. JSR 370: Java API for RESTful Web Services (JAX-RS
2.1) Specification. https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-
spec/jaxrs-2_1-final-spec.pdf. [Online; accessed March-2023].

[14] Treasure Data. 2023. Digdag. https://github.com/treasure-data/digdag. [Online;
accessed March-2023].

[15] Inc. DataStax. 2022. Management API for Apache Cassandra. https://github.com/
k8ssandra/management-api-for-apache-cassandra. [Online; accessed March-
2023].

[16] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[17] Jakarta EE. 2022. Jarkata Servlet. https://projects.eclipse.org/projects/ee4j.servlet.
[Online; accessed May-2023].

[18] The enviroCar project. 2022. enviroCar Server. https://github.com/enviroCar/
enviroCar-server. [Online; accessed March-2023].

[19] Mathew Estafanous. 2022. Ur-Codebin. https://github.com/Mathew-Estafanous/
Ur-Codebin-API. [Online; accessed March-2023].

[20] R. Fielding, M. Nottingham, and J. Reschke. 2022. HTTP Semantics. RFC 9110.
https://httpwg.org/specs/rfc9110.html

[21] Fabio Formosa. 2022. Quartz Manager. https://github.com/fabioformosa/quartz-
manager. [Online; accessed March-2023].

[22] Eclipse Foundation. 2023. Eclipse Jersey. https://eclipse-ee4j.github.io/jersey/.
[Online; accessed March-2023].

[23] Development Gateway. 2017. Open Contracting Vietnam (OCVN). https://github.
com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest-gui/ocvn. [Online;
accessed March-2023].

[24] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2023. Testing RESTful
APIs: A Survey. ACM Transactions on Software Engineering Methodology 33, 1
(nov 2023), 41 pages. https://doi.org/10.1145/3617175

[25] Gravitee.io. 2023. Gravitee.io API Management. https://github.com/gravitee-
io/gravitee-api-management. [Online; accessed March-2023].

[26] Henk Grent, Aleksei Akimov, and Maurício Aniche. 2021. Automatically Identi-
fying Parameter Constraints in Complex Web APIs: A Case Study at Adyen. In
43rd International Conference on Software Engineering: Software Engineering in
Practice. IEEE Press, 71–80. https://doi.org/10.1109/ICSE-SEIP52600.2021.00016

[27] GIScience Research Group and HeiGIT. 2023. Ohsome API. https://github.com/
GIScience/ohsome-api. [Online; accessed March-2023].

[28] William G.J. Halfond, Saswat Anand, and Alessandro Orso. 2009. Precise In-
terface Identification to Improve Testing and Analysis of Web Applications.
In International Symposium on Software Testing and Analysis. 285–296. https:
//doi.org/10.1145/1572272.1572305

[29] WilliamG. J. Halfond and Alessandro Orso. 2007. Improving Test Case Generation
for Web Applications Using Automated Interface Discovery. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 145–154. https://doi.org/10.1145/1287624.1287646

[30] Ruanqianqian (Lisa) Huang, Ayana Monroe, Nikolaj Bjørner, and Peli de Halleux.
2023. Z3 Documentation: Simplifiers Summary. https://microsoft.github.io/
z3guide/docs/strategies/simplifiers-summary. [Online; accessed Nov-2023].

[31] Confluent Inc. 2023. Kafka REST Proxy. https://github.com/confluentinc/kafka-
rest. [Online; accessed March-2023].

[32] The Zalando Incubator. 2018. CatWatch. https://github.com/EMResearch/EMB/
tree/master/jdk_8_maven/cs/rest/original/catwatch. [Online; accessed March-
2023].

[33] OpenAPI Initiative. 2021. OpenAPI Specification. https://spec.openapis.org/oas/
latest.html. [Online; accessed March-2023].

[34] OpenAPI Initiative. 2021. Schema Properties in OpenAPI 3.0. https://spec.
openapis.org/oas/v3.0.0#properties. [Online; accessed March-2023].

[35] Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Harrop,
Thomas Risberg, Alef Arendsen, Darren Davison, Dmitriy Kopylenko, Mark
Pollack, Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer,
John Lewis, Costin Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen
Poutsma, Chris Beams, Tareq Abedrabbo, Andy Clement, Dave Syer, Oliver
Gierke, Rossen Stoyanchev, Phillip Webb, Rob Winch, Brian Clozel, Stephane
Nicoll, Sebastien Deleuze, Jay Bryant, and Mark Paluch. 2022. Spring Framework
Documentation. https://docs.spring.io/spring-framework/reference/. [Online;
accessed March-2023].

[36] Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. 2023. Adaptive REST API
Testing with Reinforcement Learning. In International Conference on Automated
Software Engineering (ASE). arXiv:2309.04583

[37] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated
Test Generation for REST APIs: No Time to Rest Yet. In International Symposium
on Software Testing and Analysis (ISSTA). 289–301. https://doi.org/10.1145/
3533767.3534401

[38] Elizabeth Lawler, Kevin Gilpin, Brian Kelly, Dustin Byrne, Dan Warner, Alan
Potter, Rafal Rzepecki, Laurent Christophe, Ty Paulhus, and Adam Trotta. 2022.
AppMap. https://appmap.io/. [Online; accessed March-2023].

[39] Hongjun Li. 2011. RESTful Web service frameworks in Java. In International
Conference on Signal Processing, Communications and Computing (ICSPCC). 1–4.
https://doi.org/10.1109/ICSPCC.2011.6061739

[40] Alberto Martin-Lopez, Andrea Arcuri, Sergio Segura, and Antonio Ruiz-Cortés.
2021. Black-Box and White-Box Test Case Generation for RESTful APIs: Enemies
or Allies?. In IEEE International Symposium on Software Reliability Engineering
(ISSRE). 231–241. https://doi.org/10.1109/ISSRE52982.2021.00034

[41] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2022. Online
Testing of RESTful APIs: Promises and Challenges. In European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 408–420. https://doi.org/10.1145/3540250.3549144

[42] Javier Mu noz Ferrara. 2016. Features Model MicroService. https://github.com/
EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/features-service.
[Online; accessed March-2023].

[43] OpenAPI Initiative. 2023. OpenAPI 3.0 Data Types. https://swagger.io/docs/
specification/data-models/data-types/. [Online; accessed March-2023].

[44] Marty Pitt, Dilip Krishnan, and Adrian Kelly. 2020. SpringFox. https://github.
com/springfox/springfox. [Online; accessed March-2023].

[45] Marty Pitt, Dilip Krishnan, and Adrian Kelly. 2020. SpringFox Documentation:
Docket Spring Java Configuration. http://springfox.github.io/springfox/docs/
snapshot/#docket-spring-java-configuration. [Online; accessed Nov-2023].

[46] Postman. 2023. Postman. https://www.postman.com. [Online; accessed March-
2023].

[47] ProxyPrint. 2016. proxyprint-kitchen. https://github.com/EMResearch/EMB/tree/
master/jdk_8_maven/cs/rest/original/proxyprint. [Online; accessed March-2023].

[48] Alessandro Romanelli, Souhaila Serbout, and Cesare Pautasso. 2022. ExpressO:
From Express.js implementation code to OpenAPI interface descriptions. In
European Conference on Software Architecture (ECSA). Springer.

[49] Talend S.A. 2023. Talend. https://www.talend.com. [Online; accessed March-
2023].

[50] Spring. 2022. Spring Boot. https://spring.io/projects/spring-boot. [Online;
accessed March-2023].

[51] Spring. 2023. Spring Framework 6.0.11 API. https://docs.spring.io/spring-
framework/docs/current/javadoc-api/. [Online; accessed July-2023].

[52] springdoc. 2023. springdoc-openapi. https://github.com/springdoc/springdoc-
openapi. [Online; accessed March-2023].

[53] Stoplight. 2023. Stoplight. https://stoplight.io/studio. [Online; accessed March-
2023].

https://archive.softwareheritage.org/browse/origin/https://github.com/nntzuekai/Respector
https://archive.softwareheritage.org/browse/origin/https://github.com/nntzuekai/Respector
https://github.com/EMResearch/EMB/tree/master/jdk_11_maven/em/embedded/rest/cwa-verification
https://github.com/EMResearch/EMB/tree/master/jdk_11_maven/em/embedded/rest/cwa-verification
https://apiblueprint.org/documentation/specification.html
https://apiblueprint.org/documentation/specification.html
https://github.com/apiaryio/dredd
https://apiary.io
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/restcountries
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/restcountries
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3477271
https://github.com/KittyHeaven/blue_bird
https://github.com/KittyHeaven/blue_bird
https://github.com/Senzing/senzing-api-server
https://github.com/Senzing/senzing-api-server
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf
https://github.com/treasure-data/digdag
https://github.com/k8ssandra/management-api-for-apache-cassandra
https://github.com/k8ssandra/management-api-for-apache-cassandra
https://projects.eclipse.org/projects/ee4j.servlet
https://github.com/enviroCar/enviroCar-server
https://github.com/enviroCar/enviroCar-server
https://github.com/Mathew-Estafanous/Ur-Codebin-API
https://github.com/Mathew-Estafanous/Ur-Codebin-API
https://httpwg.org/specs/rfc9110.html
https://github.com/fabioformosa/quartz-manager
https://github.com/fabioformosa/quartz-manager
https://eclipse-ee4j.github.io/jersey/
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest-gui/ocvn
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest-gui/ocvn
https://doi.org/10.1145/3617175
https://github.com/gravitee-io/gravitee-api-management
https://github.com/gravitee-io/gravitee-api-management
https://doi.org/10.1109/ICSE-SEIP52600.2021.00016
https://github.com/GIScience/ohsome-api
https://github.com/GIScience/ohsome-api
https://doi.org/10.1145/1572272.1572305
https://doi.org/10.1145/1572272.1572305
https://doi.org/10.1145/1287624.1287646
https://microsoft.github.io/z3guide/docs/strategies/simplifiers-summary
https://microsoft.github.io/z3guide/docs/strategies/simplifiers-summary
https://github.com/confluentinc/kafka-rest
https://github.com/confluentinc/kafka-rest
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/catwatch
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/catwatch
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/v3.0.0#properties
https://spec.openapis.org/oas/v3.0.0#properties
https://docs.spring.io/spring-framework/reference/
https://arxiv.org/abs/2309.04583
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3533767.3534401
https://appmap.io/
https://doi.org/10.1109/ICSPCC.2011.6061739
https://doi.org/10.1109/ISSRE52982.2021.00034
https://doi.org/10.1145/3540250.3549144
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/features-service
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/features-service
https://swagger.io/docs/specification/data-models/data-types/
https://swagger.io/docs/specification/data-models/data-types/
https://github.com/springfox/springfox
https://github.com/springfox/springfox
http://springfox.github.io/springfox/docs/snapshot/#docket-spring-java-configuration
http://springfox.github.io/springfox/docs/snapshot/#docket-spring-java-configuration
https://www.postman.com
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/proxyprint
https://github.com/EMResearch/EMB/tree/master/jdk_8_maven/cs/rest/original/proxyprint
https://www.talend.com
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-framework/docs/current/javadoc-api/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/
https://github.com/springdoc/springdoc-openapi
https://github.com/springdoc/springdoc-openapi
https://stoplight.io/studio

Generating REST API Specifications through Static Analysis ICSE 2024, April 2024, Lisbon, Portugal

[54] Swagger. 2023. Swagger Core. https://github.com/swagger-api/swagger-core.
[Online; accessed March-2023].

[55] Swagger. 2023. Swagger Inspector. https://inspector.swagger.io/. [Online;
accessed March-2023].

[56] David Tang. 2021. Nested Resource URL Paths and Relationship Links. Pro Ember
Data: Getting Ember Data to Work with Your API (2021), 87–91.

[57] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization Framework. In
CASCON First Decade High Impact Papers (Toronto, Ontario, Canada). USA, 214–
224. https://doi.org/10.1145/1925805.1925818

[58] RAMLWorkgroup. 2020. RAML. https://raml.org. [Online; accessed March-2023].
[59] Rahulkrishna Yandrapally, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah.

2023. Carving UI Tests to Generate API Tests and API Specification. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). 1971–
1982. https://doi.org/10.1109/ICSE48619.2023.00167

[60] Kamil Zasada and Michał Myśliwiec. 2016. ramlo. https://github.com/PGSSoft/
ramlo. [Online; accessed March-2023].

[61] Man Zhang and Andrea Arcuri. 2023. Open Problems in Fuzzing RESTful APIs:
A Comparison of Tools. ACM Trans. Softw. Eng. Methodol. 32, 6, Article 144 (sep
2023), 45 pages. https://doi.org/10.1145/3597205

https://github.com/swagger-api/swagger-core
https://inspector.swagger.io/
https://doi.org/10.1145/1925805.1925818
https://raml.org
https://doi.org/10.1109/ICSE48619.2023.00167
https://github.com/PGSSoft/ramlo
https://github.com/PGSSoft/ramlo
https://doi.org/10.1145/3597205

	Abstract
	1 Introduction
	2 Motivating Example
	3 The Respector Approach
	4 Empirical Evaluation
	4.1 Experiment Setup
	4.2 Results
	4.3 Discussion
	4.4 Limitations and Threats to Validity

	5 Related Work
	6 Contributions
	References

